A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone
-
* Corresponding authors.
E-mail addresses: mpt@henu.edu.cn (P. Ma), erick@ecut.edu.cn (G. Yang).
Citation:
Dongsheng Yang, Zixin Li, Yaoyao Lian, Ziyao Fu, Tianjiao Li, Pengtao Ma, Guoping Yang. A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone[J]. Chinese Chemical Letters,
;2025, 36(3): 109717.
doi:
10.1016/j.cclet.2024.109717
P. Ma, F. Hu, J. Wang, et al., Coord. Chem. Rev. 378 (2019) 281–309.
doi: 10.1016/j.ccr.2018.02.010
J.C. Liu, J.F. Wang, Q. Han, et al., Angew. Chem. Int. Ed. 60 (2021) 11153–11157.
doi: 10.1002/anie.202017318
Y.F. Liu, C.W. Hu, G.P. Yang. Chin. Chem. Lett. 34 (2023) 108097.
doi: 10.1016/j.cclet.2022.108097
X.D. Liu, N. Xu, X.H. Liu, et al., Chem. Commun. 58 (2022) 12236–12239.
doi: 10.1039/d2cc02748h
K. Zheng, D. Yang, B. Niu, et al., Inorg. Chem. 61 (2022) 20222–20226.
doi: 10.1021/acs.inorgchem.2c03494
K. Zheng, P. Ma, Dalton Trans. 53 (2024) 3949–3958.
doi: 10.1039/d3dt03999d
H. Zhang, W. Zhao, H. Li, et al., Polyoxometalates 1 (2022) 9140011.
doi: 10.26599/pom.2022.9140011
J. Li, D. Zhang, Y. Chi, et al., Polyoxometalates 1 (2022) 9140012.
doi: 10.26599/pom.2022.9140012
Z.X. Yang, F. Gong, D. Lin, et al., Coord. Chem. Rev. 492 (2023) 215205.
doi: 10.1016/j.ccr.2023.215205
D. Yang, L. Liu, Y. Zhang, et al., Chem. Commun. 60 (2024) 3043–3046.
doi: 10.1039/d4cc00216d
S.R. Li, W.D. Liu, L.S. Long, et al., Polyoxometalates 2 (2023) 9140022.
doi: 10.26599/pom.2023.9140022
B. Yan, R. Liang, K. Zheng, et al., Inorg. Chem. 60 (2021) 8164–8172.
doi: 10.1021/acs.inorgchem.1c00798
H. Chen, K. Zheng, C. Chen, et al., Inorg. Chem. 61 (2022) 3387–3395.
doi: 10.1021/acs.inorgchem.1c03073
M. Harris, C. Henoumont, W. Peeters, et al., Dalton Trans. 47 (2018) 10646–10653.
doi: 10.1039/c8dt01227j
K. Li, Y.F. Liu, X.L. Lin, et al., Inorg. Chem. 61 (2022) 6934–6942.
doi: 10.1021/acs.inorgchem.2c00287
Y. Liu, L. Li, S. Meng, et al., Inorg. Chem. 62 (2023) 12954–12964.
doi: 10.1021/acs.inorgchem.3c01749
S.S. Wang, G.Y. Yang, Chem. Rev. 115 (2015) 4893–4962.
doi: 10.1021/cr500390v
S.T. Zheng, G.Y. Yang, Chem. Soc. Rev. 41 (2012) 7623–7646.
doi: 10.1039/c2cs35133a
J. Liu, N. Jiang, J.M. Lin, et al., Angew. Chem. Int. Ed. (2023) e202304728.
K. Zheng, B. Niu, C. Lin, et al., Chin. Chem. Lett. 34 (2023) 107238.
doi: 10.1016/j.cclet.2022.02.043
K. Suzuki, M. Sugawa, Y.J. Kikukawa, et al., Inorg. Chem. 51 (2012) 6953–6961.
doi: 10.1021/ic3008365
H. Li, W. Chen, Z. Yuan, et al., Inorg. Chem. 61 (2022) 9935–9945.
doi: 10.1021/acs.inorgchem.2c00718
Z. Liu, X. Zhang, R. Wan, et al., Chem. Commun. 57 (2021) 10250–10253.
doi: 10.1039/d1cc03646g
Q. Hu, S. Chen, T. Wågberg, et al., Angew. Chem. Int. Ed. (2023) e202303290.
doi: 10.1002/anie.202303290
J.L. Chen, Z.W. Wang, P.Y. Zhang, et al., Inorg. Chem. 62 (2023) 10291–10297.
doi: 10.1021/acs.inorgchem.3c01091
L. Schwiedrzik, T. Rajkovic, L. González, ACS Catal. 13 (2023) 3007–3019.
doi: 10.1021/acscatal.2c06301
B. Xu, Q. Xu, Q. Wang, et al., Inorg. Chem. 60 (2021) 4792–4799.
doi: 10.1021/acs.inorgchem.0c03741
C.N. Kato, T. Ogasawara, A. Kondo, et al., Catal. Commun. 96 (2017) 41–45.
doi: 10.1016/j.catcom.2017.03.025
R.G. Finke, B. Rapko, T.J.R. Weakley, Inorg. Chem. 28 (1989) 1579–1582.
doi: 10.1021/ic00307a030
X. Fang, T.M. Anderson, Y. Hou, et al., Chem. Commun. (2005) 5044–5046.
doi: 10.1039/b508468g
B.S. Bassil, M.H. Dickman, U. Kortz, Inorg. Chem. 45 (2006) 2394–2396.
doi: 10.1021/ic052131c
X. Fang, C.L. Angew. Chem. Int. Ed. 46 (2007) 3877–3880.
doi: 10.1002/anie.200700004
L. Chen, Y. Liu, S. Chen, et al., J Clust. Sci. 20 (2009) 331–340.
doi: 10.1007/s10876-009-0250-9
G. Al-Kadamany, S.S. Mal, B. Milev, et al., Chem. Eur. J. 16 (2010) 11797–11800.
doi: 10.1002/chem.201000786
L. Huang, S.S. Wang, J.W. Zhao et al., J. Am. Chem. Soc. 136 (2014) 7637–7642.
doi: 10.1021/ja413134w
Z. Zhang, J.W. Zhao, G.Y. Yang, Eur. J. Inorg. Chem. (2017) 3244–3247.
doi: 10.1002/ejic.201700410
Z. Zhang, B.F. Yang, G.Y. Yang, J. Clust. Sci. 28 (2017) 2565–2573.
doi: 10.1007/s10876-017-1236-7
Z. Zhang, H.L. Li, Y.L. Wang, et al., Inorg. Chem. 58 (2019) 2372–2378.
doi: 10.1021/acs.inorgchem.8b02805
H. -L. Li, C. Lian, D.P. Yin, et al., Inorg. Chem. 59 (2020) 12842–12849.
doi: 10.1021/acs.inorgchem.0c01910
Z. Zhang, Y.L. Wang, Y. Liu, et al., Nanoscale 12 (2020) 18333–18341.
doi: 10.1039/d0nr02945a
P.Y. Zhang, Y. Wang, L.Y. Yao, et al., Inorg. Chem. 61 (2022) 10410–10416.
doi: 10.1021/acs.inorgchem.2c01124
H.L. Li, C. Lian, G.Y. Yang, Dalton Trans. 52 (2023) 857–861.
doi: 10.1039/d2dt03820j
U. Kortz, M.G. Savelieff, B.S. Bassil, et al., Angew. Chem. Int. Ed. 40 (2001) 3384–3386.
B.S. Bassil, S.S. Mal, M.H. Dickman, et al., J. Am. Chem. Soc. 130 (2008) 6696–6697.
doi: 10.1021/ja801424q
S.S. Mal, N.H. Nsouli, M. Carraro, et al., Inorg. Chem. 49 (2010) 7–9.
doi: 10.1021/ic902203p
A. Sundar, N.V. Maksimchuk, I.D. Ivanchikova, et al., Chem. Eur. 2 (2024) e202300066.
M.C. Carreno, Chem. Rev. 95 (1995) 1717–1760.
doi: 10.1021/cr00038a002
I.F. Fernandez, N. Khiar, Chem. Rev. 103 (2003) 3651–3705.
doi: 10.1021/cr990372u
M. Han, Y. Niu, R. Wan, et al., Chem. Eur. J. 24 (2018) 11059–11066.
doi: 10.1002/chem.201800748
T.Y. Dang, R.H. Li, H.R. Tian, et al., Inorg. Chem. Front. 8 (2021) 4367–4375.
doi: 10.1039/d1qi00799h
H. Li, C. Lian, L. Chen, et al., Nanoscale 12 (2020) 16091–16101.
doi: 10.1039/d0nr04051g
P. Ma, F. Hu, J. Wang, et al., Coord. Chem. Rev. 378 (2019) 281–309.
doi: 10.1016/j.ccr.2018.02.010
J.C. Liu, J.F. Wang, Q. Han, et al., Angew. Chem. Int. Ed. 60 (2021) 11153–11157.
doi: 10.1002/anie.202017318
Y.F. Liu, C.W. Hu, G.P. Yang. Chin. Chem. Lett. 34 (2023) 108097.
doi: 10.1016/j.cclet.2022.108097
X.D. Liu, N. Xu, X.H. Liu, et al., Chem. Commun. 58 (2022) 12236–12239.
doi: 10.1039/d2cc02748h
K. Zheng, D. Yang, B. Niu, et al., Inorg. Chem. 61 (2022) 20222–20226.
doi: 10.1021/acs.inorgchem.2c03494
K. Zheng, P. Ma, Dalton Trans. 53 (2024) 3949–3958.
doi: 10.1039/d3dt03999d
H. Zhang, W. Zhao, H. Li, et al., Polyoxometalates 1 (2022) 9140011.
doi: 10.26599/pom.2022.9140011
J. Li, D. Zhang, Y. Chi, et al., Polyoxometalates 1 (2022) 9140012.
doi: 10.26599/pom.2022.9140012
Z.X. Yang, F. Gong, D. Lin, et al., Coord. Chem. Rev. 492 (2023) 215205.
doi: 10.1016/j.ccr.2023.215205
D. Yang, L. Liu, Y. Zhang, et al., Chem. Commun. 60 (2024) 3043–3046.
doi: 10.1039/d4cc00216d
S.R. Li, W.D. Liu, L.S. Long, et al., Polyoxometalates 2 (2023) 9140022.
doi: 10.26599/pom.2023.9140022
B. Yan, R. Liang, K. Zheng, et al., Inorg. Chem. 60 (2021) 8164–8172.
doi: 10.1021/acs.inorgchem.1c00798
H. Chen, K. Zheng, C. Chen, et al., Inorg. Chem. 61 (2022) 3387–3395.
doi: 10.1021/acs.inorgchem.1c03073
M. Harris, C. Henoumont, W. Peeters, et al., Dalton Trans. 47 (2018) 10646–10653.
doi: 10.1039/c8dt01227j
K. Li, Y.F. Liu, X.L. Lin, et al., Inorg. Chem. 61 (2022) 6934–6942.
doi: 10.1021/acs.inorgchem.2c00287
Y. Liu, L. Li, S. Meng, et al., Inorg. Chem. 62 (2023) 12954–12964.
doi: 10.1021/acs.inorgchem.3c01749
S.S. Wang, G.Y. Yang, Chem. Rev. 115 (2015) 4893–4962.
doi: 10.1021/cr500390v
S.T. Zheng, G.Y. Yang, Chem. Soc. Rev. 41 (2012) 7623–7646.
doi: 10.1039/c2cs35133a
J. Liu, N. Jiang, J.M. Lin, et al., Angew. Chem. Int. Ed. (2023) e202304728.
K. Zheng, B. Niu, C. Lin, et al., Chin. Chem. Lett. 34 (2023) 107238.
doi: 10.1016/j.cclet.2022.02.043
K. Suzuki, M. Sugawa, Y.J. Kikukawa, et al., Inorg. Chem. 51 (2012) 6953–6961.
doi: 10.1021/ic3008365
H. Li, W. Chen, Z. Yuan, et al., Inorg. Chem. 61 (2022) 9935–9945.
doi: 10.1021/acs.inorgchem.2c00718
Z. Liu, X. Zhang, R. Wan, et al., Chem. Commun. 57 (2021) 10250–10253.
doi: 10.1039/d1cc03646g
Q. Hu, S. Chen, T. Wågberg, et al., Angew. Chem. Int. Ed. (2023) e202303290.
doi: 10.1002/anie.202303290
J.L. Chen, Z.W. Wang, P.Y. Zhang, et al., Inorg. Chem. 62 (2023) 10291–10297.
doi: 10.1021/acs.inorgchem.3c01091
L. Schwiedrzik, T. Rajkovic, L. González, ACS Catal. 13 (2023) 3007–3019.
doi: 10.1021/acscatal.2c06301
B. Xu, Q. Xu, Q. Wang, et al., Inorg. Chem. 60 (2021) 4792–4799.
doi: 10.1021/acs.inorgchem.0c03741
C.N. Kato, T. Ogasawara, A. Kondo, et al., Catal. Commun. 96 (2017) 41–45.
doi: 10.1016/j.catcom.2017.03.025
R.G. Finke, B. Rapko, T.J.R. Weakley, Inorg. Chem. 28 (1989) 1579–1582.
doi: 10.1021/ic00307a030
X. Fang, T.M. Anderson, Y. Hou, et al., Chem. Commun. (2005) 5044–5046.
doi: 10.1039/b508468g
B.S. Bassil, M.H. Dickman, U. Kortz, Inorg. Chem. 45 (2006) 2394–2396.
doi: 10.1021/ic052131c
X. Fang, C.L. Angew. Chem. Int. Ed. 46 (2007) 3877–3880.
doi: 10.1002/anie.200700004
L. Chen, Y. Liu, S. Chen, et al., J Clust. Sci. 20 (2009) 331–340.
doi: 10.1007/s10876-009-0250-9
G. Al-Kadamany, S.S. Mal, B. Milev, et al., Chem. Eur. J. 16 (2010) 11797–11800.
doi: 10.1002/chem.201000786
L. Huang, S.S. Wang, J.W. Zhao et al., J. Am. Chem. Soc. 136 (2014) 7637–7642.
doi: 10.1021/ja413134w
Z. Zhang, J.W. Zhao, G.Y. Yang, Eur. J. Inorg. Chem. (2017) 3244–3247.
doi: 10.1002/ejic.201700410
Z. Zhang, B.F. Yang, G.Y. Yang, J. Clust. Sci. 28 (2017) 2565–2573.
doi: 10.1007/s10876-017-1236-7
Z. Zhang, H.L. Li, Y.L. Wang, et al., Inorg. Chem. 58 (2019) 2372–2378.
doi: 10.1021/acs.inorgchem.8b02805
H. -L. Li, C. Lian, D.P. Yin, et al., Inorg. Chem. 59 (2020) 12842–12849.
doi: 10.1021/acs.inorgchem.0c01910
Z. Zhang, Y.L. Wang, Y. Liu, et al., Nanoscale 12 (2020) 18333–18341.
doi: 10.1039/d0nr02945a
P.Y. Zhang, Y. Wang, L.Y. Yao, et al., Inorg. Chem. 61 (2022) 10410–10416.
doi: 10.1021/acs.inorgchem.2c01124
H.L. Li, C. Lian, G.Y. Yang, Dalton Trans. 52 (2023) 857–861.
doi: 10.1039/d2dt03820j
U. Kortz, M.G. Savelieff, B.S. Bassil, et al., Angew. Chem. Int. Ed. 40 (2001) 3384–3386.
B.S. Bassil, S.S. Mal, M.H. Dickman, et al., J. Am. Chem. Soc. 130 (2008) 6696–6697.
doi: 10.1021/ja801424q
S.S. Mal, N.H. Nsouli, M. Carraro, et al., Inorg. Chem. 49 (2010) 7–9.
doi: 10.1021/ic902203p
A. Sundar, N.V. Maksimchuk, I.D. Ivanchikova, et al., Chem. Eur. 2 (2024) e202300066.
M.C. Carreno, Chem. Rev. 95 (1995) 1717–1760.
doi: 10.1021/cr00038a002
I.F. Fernandez, N. Khiar, Chem. Rev. 103 (2003) 3651–3705.
doi: 10.1021/cr990372u
M. Han, Y. Niu, R. Wan, et al., Chem. Eur. J. 24 (2018) 11059–11066.
doi: 10.1002/chem.201800748
T.Y. Dang, R.H. Li, H.R. Tian, et al., Inorg. Chem. Front. 8 (2021) 4367–4375.
doi: 10.1039/d1qi00799h
H. Li, C. Lian, L. Chen, et al., Nanoscale 12 (2020) 16091–16101.
doi: 10.1039/d0nr04051g
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Jun Zhang , Zhiyao Zheng , Can Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360