The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review
-
* Corresponding author.
E-mail address: jma@tongji.edu.cn (J. Ma).
Citation: Jie Ma, Jianxiang Wang, Jianhua Yuan, Xiao Liu, Yun Yang, Fei Yu. The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review[J]. Chinese Chemical Letters, ;2024, 35(11): 109693. doi: 10.1016/j.cclet.2024.109693
D. Kerstens, B. Smeyers, J. Van Waeyenberg, et al., Adv. Mater. 32 (2020) 2004690.
doi: 10.1002/adma.202004690
F. Mumtaz, M.F. Irfan, M.R. Usman, J. Iran, Chem. Soc. 18 (2021) 2215–2229.
L.H. Chen, M.H. Sun, Z. Wang, et al., Chem. Rev. 120 (2020) 11194–11294.
doi: 10.1021/acs.chemrev.0c00016
P. Maina, M. Mbarawa, Energ. Fuel. 25 (2011) 2028–2038.
doi: 10.1021/ef200156c
K.S. Park, Z. Ni, A.P. Cote, et al., Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10186–10191.
doi: 10.1073/pnas.0602439103
S.B. Wang, Y.L. Peng, Chem. Eng. J. 156 (2010) 11–24.
doi: 10.1016/j.cej.2009.10.029
H. Hayashi, A.P. Cote, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Nat. Mater. 6 (2007) 501–506.
doi: 10.1038/nmat1927
M. Choi, H.S. Cho, R. Srivastava, et al., Nat. Mater. 5 (2006) 718–723.
doi: 10.1038/nmat1705
A.H. Janssen, A.J. Koster, K.P. de Jong, J. Phys. Chem. B 106 (2002) 11905–11909.
doi: 10.1021/jp025971a
J. Brus, L. Kobera, W. Schoefberger, et al., Angew. Chem. Int. Ed. 54 (2015) 541–545.
doi: 10.1002/anie.201409635
M. Gackowski, J. Podobinski, E. Broclawik, J. Datka, Molecules 25 (2020) 31.
S.S. Huang, W. Deng, L. Zhang, et al., Micropor. Mesopor. Mat. 302 (2020) 110204.
doi: 10.1016/j.micromeso.2020.110204
M. Milina, S. Mitchell, P. Crivelli, D. Cooke, J. Perez-Ramirez, Nat. Commun. 5 (2014) 3922.
doi: 10.1038/ncomms4922
F.L. Bleken, K. Barbera, F. Bonino, et al., J. Catal. 307 (2013) 62–73.
doi: 10.1016/j.jcat.2013.07.004
S. Sartipi, K. Parashar, M.J. Valero-Romero, et al., J. Catal. 305 (2013) 179–190.
doi: 10.1016/j.jcat.2013.05.012
L.H. Chen, M.H. Sun, Z. Wang, et al., Chem. Rev. 120 (2020) 11194–11294.
doi: 10.1021/acs.chemrev.0c00016
L.G. Possato, R.N. Diniz, T. Garetto, et al., J. Catal. 300 (2013) 102–112.
doi: 10.1016/j.jcat.2013.01.003
A. Omegna, M. Vasic, J.A. van Bokhoven, G. Pirngruber, R. Prins, Phys. Chem. Chem. Phys. 6 (2004) 447–452.
doi: 10.1039/b311925d
B.M. Murhy, J.C. Wu, H.J. Cho, et al., ACS Catal. 9 (2019) 1931–1942.
doi: 10.1021/acscatal.8b03936
X.F. Yi, K.Y. Liu, W. Chen, et al., J. Am. Chem. Soc. 140 (2018) 10764–10774.
doi: 10.1021/jacs.8b04819
M.U.C. Braga, G.H. Perin, L.H. de Oliveira, P.A. Arroyo, Micropor. Mesopor. Mat. 331 (2022) 111643.
doi: 10.1016/j.micromeso.2021.111643
C. Hahn, J. Seidel, F. Mertens, S. Kureti, Phys. Chem. Chem. Phys. 24 (2022) 7493–7504.
doi: 10.1039/D1CP05378G
J.S. Beck, J.C. Vartuli, W.J. Roth, et al., J. Am. Chem. Soc. 114 (1992) 10834–10843.
doi: 10.1021/ja00053a020
J. Kim, M. Choi, R. Ryoo, J. Catal. 269 (2010) 219–228.
doi: 10.1016/j.jcat.2009.11.009
S. Che, A.E. Garcia-Bennett, T. Yokoi, et al., Nat. Mater. 2 (2003) 801–805.
doi: 10.1038/nmat1022
J. Zhu, Y. Zhu, L. Zhu, et al., J. Am. Chem. Soc. 136 (2014) 2503–2510.
doi: 10.1021/ja411117y
F.S. Xiao, L.F. Wang, C.Y. Yin, et al., Angew. Chem. Int. Ed. 45 (2006) 3090–3093.
doi: 10.1002/anie.200600241
M. Choi, K. Na, J. Kim, et al., Nature 461 (2009) 246–249.
doi: 10.1038/nature08288
Y. Zhang, X. Shen, Z. Gong, et al., Chemistry 25 (2019) 738–742.
doi: 10.1002/chem.201804841
A. Korde, B. Min, E. Kapaca, et al., Science 375 (2022) 62–66.
doi: 10.1126/science.abg3793
K. Zhang, S. Luo, Z. Liu, et al., Chemistry 24 (2018) 8133–8140.
doi: 10.1002/chem.201706176
Z. Chen, J. Zhang, B. Yu, et al., J. Mater. Chem. A 4 (2016) 2305–2313.
doi: 10.1039/C5TA09860B
C. Chen, D. Zhai, L. Dong, et al., Chem. Mater. 31 (2019) 1528–1536.
doi: 10.1021/acs.chemmater.8b04433
C. Madsen, C.J.H. Jacobsen, Chem. Commun. 8 (1999) 673–674.
J.B. Koo, N. Jiang, S. Saravanamurugan, et al., J. Catal. 276 (2010) 327–334.
doi: 10.1016/j.jcat.2010.09.024
I. Schmidt, A. Boisen, E. Gustavsson, et al., Chem. Mater. 13 (2001) 4416–4418.
doi: 10.1021/cm011206h
Y.M. Fang, H.Q. Hu, J. Am. Chem. Soc. 128 (2006) 10636–10637.
doi: 10.1021/ja061182l
C.J.H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, J. Am. Chem. Soc. 122 (2000) 7116–7117.
doi: 10.1021/ja000744c
N.B. Chu, J.Q. Wang, Y. Zhang, et al., Chem. Mater. 22 (2010) 2757–2763.
doi: 10.1021/cm903645p
H.S. Cho, R. Ryoo, Micropor. Mesopor. Mat. 151 (2012) 107–112.
doi: 10.1016/j.micromeso.2011.11.007
F. Schmidt, S. Paasch, E. Brunner, S. Kaskel, Micropor. Mesopor. Mat. 164 (2012) 214–221.
doi: 10.1016/j.micromeso.2012.04.045
C. Xue, T. Xu, J. Zheng, et al., Mater. Lett. 154 (2015) 55–59.
doi: 10.1016/j.matlet.2015.04.059
S. Zhao, K.D. Kim, L. Wang, R. Ryoo, J. Huang, Adv. Mater. Interfaces 8 (2020) 2001846.
L. Xu, S. Wu, J. Guan, et al., Catal. Commun. 9 (2008) 1272–1276.
doi: 10.1016/j.catcom.2007.11.018
H. Zhu, Z. Liu, Y. Wang, et al., Chem. Mater. 20 (2008) 1134–1139.
doi: 10.1021/cm071385o
M. Krishnamurthy, K. Msm, C.Kanakkampalayam Krishnan, Micropor. Mesopor. Mat. 221 (2016) 23–31.
doi: 10.1016/j.micromeso.2015.09.022
M. Zhang, X. Liu, Z. Yan, Mater. Lett. 164 (2016) 543–546.
doi: 10.1016/j.matlet.2015.10.044
H. Chen, X. Shi, F. Zhou, et al., Catal. Commun. 110 (2018) 102–105.
doi: 10.1016/j.catcom.2018.03.016
G.V. Briao, S.L. Jahn, E.L. Foletto, G.L. Dotto, J. Colloid Interf. Sci. 508 (2017) 313–322.
doi: 10.1016/j.jcis.2017.08.070
F.C. Drumm, J.S. de Oliveira, E.L. Foletto, et al., Chem. Eng. Commun. 205 (2018) 445–455.
doi: 10.1080/00986445.2017.1402009
J.C. Groen, J.A. Moulijn, J. Perez-Ramirez, J. Mater. Chem. 16 (2006) 2121–2131.
doi: 10.1039/B517510K
S. Abelló, A. Bonilla, J. Pérez-Ramírez, Appl. Catal. A 364 (2009) 191–198.
doi: 10.1016/j.apcata.2009.05.055
R. Otomo, T. Yokoi, J.N. Kondo, T. Tatsumi, Appl. Catal. A 470 (2014) 318–326.
doi: 10.1016/j.apcata.2013.11.012
Q. Sheng, K. Ling, Z. Li, L. Zhao, Fuel Process. Technol. 110 (2013) 73–78.
doi: 10.1016/j.fuproc.2012.11.004
P. del Campo, P. Beato, F. Rey, et al., Catal. Today 299 (2018) 120–134.
doi: 10.1016/j.cattod.2017.04.042
A.K. Jamil, O. Muraza, M.H. Ahmed, et al., Micropor. Mesopor. Mat. 260 (2018) 30–39.
doi: 10.1016/j.micromeso.2017.10.016
W. Wan, T. Fu, R. Qi, J. Shao, Z. Li, Ind. Eng. Chem. Res. 55 (2016) 13040–13049.
doi: 10.1021/acs.iecr.6b03938
Y. Xu, J. Wang, G. Ma, J. Lin, M. Ding, ACS Sustainable Chem. Eng. 7 (2019) 18125–18132.
doi: 10.1021/acssuschemeng.9b05217
Z. Qin, L. Pinard, M.A. Benghalem, et al., Chem. Mater. 31 (2019) 4639–4648.
doi: 10.1021/acs.chemmater.8b04970
R. Jain, A. Chawla, N. Linares, J.Garcia Martinez, J.D. Rimer, Adv. Mater. 33 (2021) e2100897.
doi: 10.1002/adma.202100897
X. Zhang, D. Liu, D. Xu, et al., Science 336 (2012) 1684–1687.
doi: 10.1126/science.1221111
P. Kumar, D.W. Kim, N. Rangnekar, et al., Nat. Mater. 19 (2020) 443–449.
doi: 10.1038/s41563-019-0581-3
R. Jain, J.D. Rimer, Micropor. Mesopor. Mat. 300 (2020) 110174.
doi: 10.1016/j.micromeso.2020.110174
H. Dai, Y. Shen, T. Yang, et al., Nat. Mater. 19 (2020) 1074–1080.
doi: 10.1038/s41563-020-0753-1
Y. Liu, Q. Zhang, J. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202205716.
doi: 10.1002/anie.202205716
J. Dedecek, E. Tabor, S. Sklenak, ChemSusChem 12 (2019) 556–576.
doi: 10.1002/cssc.201801959
N. Wang, M.H. Zhang, Y.Z. Yu, Micropor. Mesopor. Mat. 169 (2013) 47–53.
doi: 10.1016/j.micromeso.2012.10.019
B.C. Knott, C.T. Nimlos, D.J. Robichaud, et al., ACS Catal. 8 (2018) 770–784.
doi: 10.1021/acscatal.7b03676
T. Liang, J. Chen, Z. Qin, et al., ACS Catal 6 (2016) 7311–7325.
doi: 10.1021/acscatal.6b01771
V. Pashkova, P. Klein, J. Dedecek, V. Tokarová, B. Wichterlová, Micropor. Mesopor. Mat. 202 (2015) 138–146.
doi: 10.1016/j.micromeso.2014.09.056
M. Xing, L. Zhang, J. Cao, et al., Micropor. Mesopor. Mat. 334 (2022) 111769.
doi: 10.1016/j.micromeso.2022.111769
Y. Roman-Leshkov, M. Moliner, M.E. Davis, J. Phys. Chem. C 115 (2011) 1096–1102.
doi: 10.1021/jp106247g
J.R. Di Iorio, S. Li, C.B. Jones, et al., J. Am. Chem. Soc. 142 (2020) 4807–4819.
doi: 10.1021/jacs.9b13817
K. Yuan, X. Jia, S. Wang, et al., Micropor. Mesopor. Mat. 341 (2022) 112051.
doi: 10.1016/j.micromeso.2022.112051
E.E. Bickel, A.J. Hoffman, S. Lee, et al., Chem. Mater. 34 (2022) 6835–6852.
doi: 10.1021/acs.chemmater.2c01083
J. Chen, T. Liang, J. Li, et al., ACS Catal. 6 (2016) 2299–2313.
doi: 10.1021/acscatal.5b02862
R. Zhao, S. Li, L. Bi, et al., Catal. Sci. Technol. 12 (2022) 2248–2256.
doi: 10.1039/D1CY01793D
H. Yang, C. Ma, X. Zhang, et al., ACS Catal. 8 (2018) 1248–1258.
doi: 10.1021/acscatal.7b02410
R.C. Shiery, S.J. McElhany, D.C. Cantu, J. Phys. Chem. C 125 (2021) 13649–13657.
doi: 10.1021/acs.jpcc.1c02932
D.V. Peron, V.L. Zholobenko, J.H.S. de Melo, et al., Micropor. Mesopor. Mat. 286 (2019) 57–64.
doi: 10.1016/j.micromeso.2019.05.033
G. Park, J.M. Kang, S.J. Park, et al., Mol. Catal. 531 (2022) 112702.
doi: 10.1016/j.mcat.2022.112702
Z.K. Xie, J.Q. Bao, Y.Q. Yang, Q.L. Chen, C.F. Zhang, J. Catal. 205 (2002) 58–66.
doi: 10.1006/jcat.2001.3421
X. He, Y. Tian, L. Guo, C. Qiao, G. Liu, J. Anal. Appl. Pyrol. 165 (2022) 105550.
doi: 10.1016/j.jaap.2022.105550
S. Wang, W. Guo, L. Zhu, et al., J. Phys. Chem. C 119 (2014) 524–533.
P. Liu, Z. Li, X. Liu, et al., ACS Catal. 10 (2020) 9197–9214.
doi: 10.1021/acscatal.0c01181
R. Liu, B. Fan, W. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) e202116990.
doi: 10.1002/anie.202116990
C. Chizallet, S. Lazare, D. Bazer-Bachi, et al., J. Am. Chem. Soc. 132 (2010) 12365–12377.
doi: 10.1021/ja103365s
L.A. Chen, J.H. Li, M.F. Ge, Environ. Sci. Technol. 44 (2010) 9590–9596.
doi: 10.1021/es102692b
W. Zhou, J. Luo, Y. Wang, et al., Appl. Catal. B: Environ. 242 (2019) 410–421.
doi: 10.1016/j.apcatb.2018.10.006
J.N. Hall, P. Bollini, ACS Catal. 10 (2020) 3750–3763.
doi: 10.1021/acscatal.0c00399
T. He, X. Liu, S. Xu, et al., J. Phys. Chem. C 120 (2016) 22526–22531.
doi: 10.1021/acs.jpcc.6b07958
R. Liu, B. Fan, Y. Zhi, et al., Angew. Chem. Int. Ed. 61 (2022) e202210658.
doi: 10.1002/anie.202210658
G. Li, C. Foo, X. Yi, et al., J. Am. Chem. Soc. 143 (2021) 8761–8771.
doi: 10.1021/jacs.1c03166
Y.Y. Yue, X.X. Guo, T. Liu, et al., Micropor. Mesopor. Mat. 293 (2020) 109772.
doi: 10.1016/j.micromeso.2019.109772
L. Zhang, W.B. Shan, M. Ke, Z.Z. Song, Catal. Commun. 124 (2019) 36–40.
doi: 10.1016/j.catcom.2019.02.025
Q. Tang, W. Deng, D. Chen, D. Liu, L. Guo, Dalton Trans. 50 (2021) 16694–16702.
doi: 10.1039/D1DT02869C
D. Panda, E.A. Kumar, S.K. Singh, J. CO2 Util. 40 (2020) 101223.
doi: 10.1016/j.jcou.2020.101223
J. Kenvin, S. Mitchell, M. Sterling, et al., Adv. Funct. Mater. 26 (2016) 5621–5630.
doi: 10.1002/adfm.201601748
X. Li, F. Rezaei, A.A. Rownaghi, Micropor. Mesopor. Mat. 276 (2019) 1–12.
doi: 10.1016/j.micromeso.2018.09.016
S.F. Li, H. Yan, Y.B. Liu, et al., Chem. Eng. J. 445 (2022) 136670.
doi: 10.1016/j.cej.2022.136670
X.F. Wei, Y. Li, Z.L. Hua, L.S. Chen, J.L. Shi, ChemCatChem 12 (2020) 6285–6290.
doi: 10.1002/cctc.202001363
A. Orsikowsky-Sanchez, F. Plantier, C. Miqueu, Adsorption 26 (2020) 1137–1152.
doi: 10.1007/s10450-020-00206-7
M. Thommes, K. Kaneko, A.V. Neimark, et al., Pure Appl. Chem. 87 (2015) 1051–1069.
doi: 10.1515/pac-2014-1117
S. Namuangruk, D. Tantanak, J. Limtrakul, J. Mol. Catal. A: Chem. 256 (2006) 113–121.
doi: 10.1016/j.molcata.2006.04.060
A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Chem. Eng. J. 171 (2011) 760–774.
doi: 10.1016/j.cej.2011.02.007
T.M. Ismail, K.P. Prasanthkumar, C. Ebenezer, et al., Langmuir 38 (2022) 10492–10502.
doi: 10.1021/acs.langmuir.2c01270
H.D. Sun, Z.L. Xie, H.L. Wang, et al., J. Mater. Chem. C 10 (2022) 8854–8859.
doi: 10.1039/D2TC01089E
C.W. Liu, Q.Y. Li, C.Z. Wu, et al., J. Am. Chem. Soc. 141 (2019) 2884–2888.
doi: 10.1021/jacs.8b13165
Q. Shen, Z. Lu, F. Bi, et al., Fuel 343 (2023) 128012.
doi: 10.1016/j.fuel.2023.128012
F. Bi, S. Ma, B. Gao, et al., Fuel 344 (2023) 128147.
doi: 10.1016/j.fuel.2023.128147
Q. Shen, Z. Lu, F. Bi, et al., Sep. Purif. Technol. 325 (2023) 124707.
doi: 10.1016/j.seppur.2023.124707
F. Bi, Z. Zhao, Y. Yang, et al., Environ. Sci. Technol. 56 (2022) 17321–17330.
doi: 10.1021/acs.est.2c06886
X. Zhang, S. Ma, B. Gao, et al., J. Colloid Interf. Sci. 651 (2023) 424–435.
doi: 10.1016/j.jcis.2023.07.205
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Naihong Wang , Longkang Zhang , Yejun Guan , Peng Wu , Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248
Guoliang Liu , Zhiqiang Liu , Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Yulin Mao , Jingyu Ma , Jiecheng Ji , Yuliang Wang , Wanhua Wu , Cheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Zhenzhen Zhao , Meichen Jiao , Jiejie Ling , Han Jiang , Yan Gao , Hao Xu , Hai-Qing Li , Jingang Jiang , Peng Wu , Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310