Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook
-
* Corresponding authors.
E-mail addresses: jiangqiu@uestc.edu.cn (Q. Jiang), chuan.xia@uestc.edu.cn (C. Xia).
Citation:
Hongliang Zeng, Yuan Ji, Jinfeng Wen, Xu Li, Tingting Zheng, Qiu Jiang, Chuan Xia. Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook[J]. Chinese Chemical Letters,
;2025, 36(3): 109686.
doi:
10.1016/j.cclet.2024.109686
J.P. Gattuso, A. Magnan, R. Billé, et al., Science 349 (2015) acc4722.
doi: 10.1126/science.aac4722
C. Wei, R.R. Rao, J. Peng, et al., Adv. Mater. 31 (2019) 1806296.
doi: 10.1002/adma.201806296
T. Takata, J. Jiang, Y. Sakata, et al., Nature 581 (2020) 411–414.
doi: 10.1038/s41586-020-2278-9
X. Tan, J. Nielsen, Chem. Soc. Rev. 51 (2022) 4763–4785.
doi: 10.1039/d2cs00309k
J. Li, X. Liu, H. Wang, et al., Chin. Chem. Lett. 35 (2024) 108596.
doi: 10.1016/j.cclet.2023.108596
G. Palmer, Nat. Energy. 4 (2019) 538–539.
doi: 10.1038/s41560-019-0426-y
X. Liu, J. He, S. Zhao, et al., Nat. Commun. 9 (2018) 4365.
doi: 10.1038/s41467-018-06815-9
S. Chandrasekaran, L. Yao, L. Deng, et al., Chem. Soc. Rev. 48 (2019) 4178–4280.
doi: 10.1039/c8cs00664d
M.S. Zantye, A. Gandhi, Y. Wang, et al., Energy Environ. Sci. 15 (2022) 4119–4136.
doi: 10.1039/d2ee00771a
L. Wang, S. Nitopi, A.B. Wong, et al., Nat. Catal. 2 (2019) 702–708.
doi: 10.1038/s41929-019-0301-z
H.L. Long, H.J. Peng, Chin. Chem. Lett. 34 (2023) 108033.
doi: 10.1016/j.cclet.2022.108033
J. Yu, W. Yu, B. Chang, et al., Chin. Chem. Lett. 33 (2022) 3231–3235.
doi: 10.1016/j.cclet.2021.10.046
I. Staffell, D. Scamman, A. Velazquez Abad, Energy Environ. Sci. 12 (2019) 463–491.
doi: 10.1039/c8ee01157e
S. Chu, A. Majumdar, Nature 488 (2012) 294–303.
doi: 10.1038/nature11475
B. Zhou, R. Gao, J.J. Zou, et al., Small 18 (2022) 2202336.
doi: 10.1002/smll.202202336
J. Zhang, G. Chen, K. Müllen, Adv. Mater. 30 (2018) 1800528.
doi: 10.1002/adma.201800528
X. Zhao, M. Chen, D. Wang, et al., Chin. Chem. Lett. 35 (2024) 109327.
doi: 10.1016/j.cclet.2023.109327
B. Guido, Scalable electrolytic systems for renewable hydrogen production: cooperative research and development final report. CRADA number CRD-18-747. Golden, CO (United States): National Renewable Energy Laboratory. NREL/TP-5900-76136.
K. Christopher, R. Dimitrios, Energy Environ. Sci. 5 (2012) 6640–6651.
doi: 10.1039/c2ee01098d
T.S. Teitsworth, D.J. Hill, S.R. Litvin, et al., Nature 614 (2023) 270–274.
doi: 10.1038/s41586-022-05549-5
T. Wang, L. Tao, X. Zhu, et al., Nat. Catal. 5 (2022) 66–73.
doi: 10.3390/plants12010066
X. Lu, S. Xie, H. Yang, et al., Chem. Soc. Rev. 43 (2014) 7581–7593.
doi: 10.1039/C3CS60392J
L. Wang, L. Duan, Y. Wang, et al., Chem. Commun. 50 (2014) 12947–12950.
doi: 10.1039/C4CC05069J
L. Wang, L. Duan, B. Stewart, et al., J. Am. Chem. Soc. 134 (2012) 18868–18880.
doi: 10.1021/ja309805m
Y. Gao, X. Ding, J. Liu, et al., J. Am. Chem. Soc. 135 (2013) 4219–4222.
doi: 10.1021/ja400402d
Y. Ma, H. Qu, W. Wang, et al., Chin. Chem. Lett. 35 (2024) 108352.
doi: 10.1016/j.cclet.2023.108352
J. Wang, W. Cui, Q. Liu, et al., Adv. Mater. 28 (2016) 215–230.
doi: 10.1002/adma.201502696
H. Liu, N. Agrawal, A. Ganguly, et al., Energy Environ. Sci. 15 (2022) 4175–4189.
doi: 10.1039/d2ee01427k
Y. Liu, Q. Wang, J. Zhang, et al., Adv. Energy Mater. 12 (2022) 2200928.
doi: 10.1002/aenm.202200928
J. Ding, H. Yang, S. Zhang, et al., Small 18 (2022) 2204524.
doi: 10.1002/smll.202204524
X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148–5180.
doi: 10.1039/C4CS00448E
H. Yu, B. Yi, Chin. J. Eng. Sci. 20 (2018) 58.
doi: 10.15302/J-SSCAE-2018.03.009
C. Zhang, H. Wang, H. Yu, et al., Adv. Energy Mater. 12 (2022) 2200875.
doi: 10.1002/aenm.202200875
D. Liu, X. Li, S. Chen, et al., Nat. Energy 4 (2019) 512–518.
doi: 10.1038/s41560-019-0402-6
Z. Wu, P. Yang, Q. Li, et al., Angew. Chem. Int. Ed. 62 (2023) 2300406.
R.C. Baetzold, J. Catal. 29 (1973) 129-137.
doi: 10.1016/0021-9517(73)90211-X
J. Zhang, Y. Zhao, X. Guo, et al., Nat. Catal. 1 (2018) 985–992.
doi: 10.1038/s41929-018-0195-1
Q. Dong, S. Ma, J. Zhu, et al., Adv. Funct. Mater. 33 (2023) 2210665.
doi: 10.1002/adfm.202210665
Y. Lykhach, S.M. Kozlov, T. Skála, et al., Nat. Mater. 15 (2016) 284–288.
doi: 10.1038/nmat4500
J. Chen, M. Aliasgar, F.B. Zamudio, et al., Nat. Commun. 14 (2023) 1711.
doi: 10.1038/s41467-023-37404-0
Q.Q. Yan, D.X. Wu, S.Q. Chu, et al., Nat. Commun. 10 (2019) 4977.
doi: 10.1038/s41467-019-12851-w
S.J. Tauster, S.C. Fung, R.L. Garten, J. Am. Chem. Soc. 100 (1978) 170–175.
doi: 10.1021/ja00469a029
A. Bruix, J.A. Rodriguez, P.J. Ramírez, et al., J. Am. Chem. Soc. 134 (2012) 8968–8974.
doi: 10.1021/ja302070k
J. Wang, H. Zhang, X. Wang, Small Methods 1 (2017) 1700118.
doi: 10.1002/smtd.201700118
A.P. Murthy, J. Madhavan, K. Murugan, J. Power Sources 398 (2018) 9–26.
doi: 10.1016/j.jpowsour.2018.07.040
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.
doi: 10.1126/science.aad4998
Q. Gao, W. Zhang, Z. Shi, et al., Adv. Mater. 31 (2019) 1802880.
doi: 10.1002/adma.201802880
C. Li, J.B. Baek, ACS Omega 5 (2020) 31–40.
doi: 10.1021/acsomega.9b03550
B.E. Conway, G. Jerkiewicz, Electrochim. Acta 45 (2000) 4075-4083.
doi: 10.1016/S0013-4686(00)00523-5
E. Skúlason, V. Tripkovic, M.E. Björketun, et al., J. Phys. Chem. C 114 (2010) 18182–18197.
doi: 10.1021/jp1048887
Y. Song, B. Xu, T. Liao, et al., Small 17 (2021) 2002240.
doi: 10.1002/smll.202002240
X.F. Lu, B.Y. Xia, S.-Q. Zang, et al., Angew. Chem. Int. Ed. 59 (2020) 4634–4650.
doi: 10.1002/anie.201910309
W. Wang, W. Geng, L. Zhang, et al., Small 19 (2023) 2206808.
doi: 10.1002/smll.202206808
D. Wang, D. Jiao, M. Gong, Appl. Catal. B 325 (2023) 122331.
doi: 10.1016/j.apcatb.2022.122331
Q. Wang, C.Q. Xu, W. Liu, et al., Nat. Commun. 11 (2020) 4246.
doi: 10.1038/s41467-020-18064-w
W. Cao, Y. Xu, Z. Wang, J. Electrochem. Soc. 167 (2020) 104511.
doi: 10.1149/1945-7111/ab9b0c
P.P. Edwards, J.M. Thomas, Angew. Chem. Int. Ed. 46 (2007) 5480–5486.
doi: 10.1002/anie.200700428
J. Greeley, J.K. Nørskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 53 (2002) 319–348.
doi: 10.1146/annurev.physchem.53.100301.131630
H. Shen, X. Tang, Q. Wu, et al., ACS Nanosci. Au 2 (2022) 520–526.
doi: 10.1021/acsnanoscienceau.2c00026
J.H. Huang, L.Y. Liu, Z.Y. Wang, et al., ACS Nano 16 (2022) 18789–18794.
doi: 10.1021/acsnano.2c07521
M.A. Abbas, M. Jeon, J.H. Bang, Phys. Chem. C 126 (2022) 16928–16942.
doi: 10.1021/acs.jpcc.2c05301
P. Gruene, D.M. Rayner, B. Redlich, et al., Science 321 (2008) 674–676.
doi: 10.1126/science.1161166
M.S. Chen, D.W. Goodman, Science 306 (2004) 252–255.
doi: 10.1126/science.1102420
H. Xiang, H. Yan, J. Liu, et al., J. Am. Chem. Soc. 144 (2022) 14248–14257.
doi: 10.1021/jacs.2c05053
Z. Zhang, T. Masubuchi, P. Sautet, et al., Angew. Chem. Int. Ed. 62 (2023) e202218210.
doi: 10.1002/anie.202218210
T.V.W. Janssens, B.S. Clausen, B. Hvolbæk, et al., Top Catal. 44 (2007) 15–26.
doi: 10.1007/s11244-007-0335-3
G.N. Vayssilov, Y. Lykhach, A. Migani, et al., Nat. Mater. 10 (2011) 310–315.
doi: 10.1038/nmat2976
C.T. Campbell, Nat. Chem. 4 (2012) 597–598.
doi: 10.1038/nchem.1412
H. Zhang, Y. Liu, H. Wu, et al., J. Mater. Chem. A 6 (2018) 20214–20223.
doi: 10.1039/c8ta07101b
J.X. Wei, M.Z. Cao, K. Xiao, et al., Small Struct. 2 (2021) 2100047.
doi: 10.1002/sstr.202100047
L. Gong, J. Zhu, F. Xia, et al., ACS Catal. 13 (2023) 4012–4020.
doi: 10.1021/acscatal.2c06340
P. Li, G. Zhao, P. Cui, et al., Nano Energy 83 (2021) 105850.
doi: 10.1016/j.nanoen.2021.105850
H. Tang, J. Wei, F. Liu, et al., J. Am. Chem. Soc. 138 (2016) 56–59.
doi: 10.1021/jacs.5b11306
M. Smiljanić, S. Panić, M. Bele, et al., ACS Catal. 12 (2022) 13021–13033.
doi: 10.1021/acscatal.2c03214
H. Yang, C. Wang, F. Hu, et al., Sci. China Mater. 60 (2017) 1121–1128.
doi: 10.1007/s40843-017-9035-8
H. Yuan, L. Zhao, B. Chang, et al., Appl. Catal. B 314 (2022) 121455.
doi: 10.1016/j.apcatb.2022.121455
J. Zhang, H.B. Yang, D. Zhou, et al., Chem. Rev. 122 (2022) 17028–17072.
doi: 10.1021/acs.chemrev.1c01003
Y. Zhu, Q. Lin, Y. Zhong, et al., Energy Environ. Sci. 13 (2020) 3361–3392.
doi: 10.1039/d0ee02485f
Y. Takabatake, Z. Noda, S.M. Lyth, et al., Int. J. Hydrogen Energy 39 (2014) 5074–5082.
doi: 10.1016/j.ijhydene.2014.01.094
G. Cognard, G. Ozouf, C. Beauger, et al., Appl. Catal. B 201 (2017) 381–390.
doi: 10.1016/j.apcatb.2016.08.010
B.W. Zhang, L. Ren, Z.F. Xu, et al., Small 17 (2021) 2100732.
doi: 10.1002/smll.202100732
X. Li, J. Yu, J. Jia, et al., Nano Energy 62 (2019) 127–135.
doi: 10.4236/jss.2019.73009
X. Cheng, Y. Li, L. Zheng, et al., Energy Environ. Sci. 10 (2017) 2450–2458.
doi: 10.1039/C7EE02537H
T. Kim, S.B. Roy, S. Moon, et al., ACS Nano 16 (2022) 1625–1638.
doi: 10.1021/acsnano.1c10504
Z.W. Wei, H.J. Wang, C. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 16622–16627.
doi: 10.1002/anie.202104856
X. Fan, C. Liu, B. Gao, et al., Small 19 (2023) 2301178.
doi: 10.1002/smll.202301178
Y. Wang, X. Xue, P. Liu, et al., ACS Nano 12 (2018) 12492–12502.
doi: 10.1021/acsnano.8b06917
N. Liu, C. Schneider, D. Freitag, et al., Nano Lett. 14 (2014) 3309–3313.
doi: 10.1021/nl500710j
S.R. Chemler, M.T. Bovino, ACS Catal. 3 (2013) 1076–1091.
doi: 10.1021/cs400138b
A.I. Kharlamov, N.V Kirillova, Sov. Powder Metall. Met. Ceram. 22 (1983) 122-134.
D.S. Baek, G.Y. Jung, B. Seo, et al., Adv. Funct. Mater. 29 (2019) 1901217.
doi: 10.1002/adfm.201901217
D.V. Esposito, S.T. Hunt, Y.C. Kimmel, et al., J. Am. Chem. Soc. 134 (2012) 3025–3033.
doi: 10.1021/ja208656v
C. Cui, R. Cheng, H. Zhang, et al., Adv. Funct. Mater. 30 (2020) 2000693.
doi: 10.1002/adfm.202000693
Y. Wu, W. Wei, R. Yu, et al., Adv. Funct. Mater. 32 (2022) 2110910.
doi: 10.1002/adfm.202110910
Z. Li, Z. Qi, S. Wang, et al., Nano Lett. 19 (2019) 5102–5108.
doi: 10.1021/acs.nanolett.9b01381
X. Zhao, M. Chen, Y. Zhou, et al., J. Mater. Chem. A 11 (2023) 5830–5840.
doi: 10.1039/d2ta09698f
G. Chen, H. Wan, W. Ma, et al., Adv. Energy Mater. 10 (2020) 1902535.
doi: 10.1002/aenm.201902535
H. Yin, Z. Tang, Chem. Soc. Rev. 45 (2016) 4873–4891.
doi: 10.1039/C6CS00343E
J. Yu, Q. Wang, D. O’Hare, et al., Chem. Soc. Rev. 46 (2017) 5950–5974.
doi: 10.1039/C7CS00318H
Q. Wang, D. Ohare, Chem. Rev. 112 (2012) 4124–4155.
doi: 10.1021/cr200434v
Q. Yan, P. Yan, T. Wei, et al., J. Mater. Chem. A 7 (2019) 2831–2837.
doi: 10.1039/c8ta10789k
R. Subbaraman, D. Tripkovic, D. Strmcnik, et al., Science 334 (2011) 1256–1260.
doi: 10.1126/science.1211934
X. Yu, J. Guo, B. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 26891–26903.
doi: 10.1021/acsami.1c03337
Y. Feng, Z. Li, S. Li, et al., J. Energy Chem. 66 (2022) 493–501.
doi: 10.1016/j.jechem.2021.08.061
W. Zhou, J. Jia, J. Lu, et al., Nano Energy 28 (2016) 29–43.
doi: 10.1016/j.nanoen.2016.08.027
H. Huang, M. Yan, C. Yang, et al., Adv. Mater. 31 (2019) 1903415.
doi: 10.1002/adma.201903415
Z. Ma, H. Tian, G. Meng, et al., Sci. China. Mater. 63 (2020) 2517–2529.
doi: 10.1007/s40843-020-1449-2
C. Fan, X. Jiang, J. Chen, et al., Small Struct. 2 (2021) 2000017.
doi: 10.1002/sstr.202000017
X.-K. Wan, H.B Wu, B.Y. Guan, et al., Adv. Mater. 32 (2020) 1901349.
doi: 10.1002/adma.201901349
W. Liu, Z. Xiang, A. Tan, et al., Adv. Funct. Mater. 33 (2023) 2212752.
doi: 10.1002/adfm.202212752
Z. Zhuang, C. Du, P. Li, et al., Electrochim. Acta 368 (2021) 137608.
doi: 10.1016/j.electacta.2020.137608
T. Yang, H. Ling, J.F. Lamonier, NPG Asia Mater. 8 (2016) e240.
doi: 10.1038/am.2015.145
J. Liu, N.P. Wickramaratne, S.Z. Qiao, et al., Nat. Mater. 14 (2015) 763–774.
doi: 10.1038/nmat4317
H. Zhang, O. Noonan, X. Huang, et al., ACS Nano 10 (2016) 4579–4586.
doi: 10.1021/acsnano.6b00723
J. Zhang, Y. Sun, J. Zhu, et al., Nano Energy 52 (2018) 307–314.
doi: 10.1299/jsmetokai.2018.67.307
X. Bao, Y. Gong, Y. Chen, et al., J. Mater. Chem. A 7 (2019) 15364–15370.
doi: 10.1039/c9ta04010b
Q. Cheng, C. Hu, G. Wang, et al., J. Am. Chem. Soc. 142 (2020) 5594–5601.
doi: 10.1021/jacs.9b11524
J. Han, C. Gong, C. He, et al., J. Mater. Chem. A 10 (2022) 16403–16408.
doi: 10.1039/d2ta05241e
M. Zhang, Q. Dai, H. Zheng, et al., Adv. Mater. 30 (2018) 1705431.
doi: 10.1002/adma.201705431
X. Chen, X. An, L. Tang, et al., Chem. Eng. J. 429 (2022) 132259.
doi: 10.1016/j.cej.2021.132259
H. Zhang, P. An, W. Zhou, et al., Sci. Adv. 4 (2018) eaao6657.
doi: 10.1126/sciadv.aao6657
G.R. Bolzan, G. Abarca, W.D.G. Gonçalves, et al., Chem. Eur. J. 24 (2018) 1365–1372.
doi: 10.1002/chem.201704094
Q. Hu, G. Li, Z. Han, et al., Adv. Energy Mater. 9 (2019) 1901130.
doi: 10.1002/aenm.201901130
J. Ren, Y. Zhou, L. Xia, et al., J. Mater. Chem. A 6 (2018) 13835–13847.
doi: 10.1039/c8ta04675a
J. Li, L. Lin, D. Rui, et al., ACS Nano 11 (2017) 4641–4650.
doi: 10.1021/acsnano.7b00313
Y.X. Xiao, J. Ying, J.B. Chen, et al., Chem. Mater. 34 (2022) 3705–3714.
doi: 10.1021/acs.chemmater.1c04400
L. Liang, H. Jin, H. Zhou, Nano Energy 88 (2021) 106221.
doi: 10.1016/j.nanoen.2021.106221
H. Yang, X. Wang, Adv. Mater. (2019) 31.
Y. Lai, Z. Zhang, Z. Zhang, et al., Chem. Eng. J. 435 (2022) 135102.
doi: 10.1016/j.cej.2022.135102
L.H. Sun, Q.Y. Li, S.N. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 25766–25770.
doi: 10.1002/anie.202111920
Y. Liu, Y. Huang, S. Zhou, et al., Inorg. Chem. 62 (2023) 8719–8728.
doi: 10.1021/acs.inorgchem.3c01017
P. Yin, T. Yao, Y. Wu, et al., Angew. Chem. Int. Ed. 128 (2016) 10958–10963.
doi: 10.1002/ange.201604802
Y. Tan, J. Feng, H. Dong, et al., Adv. Funct. Mater. 33 (2023) 2209967.
doi: 10.1002/adfm.202209967
A. Shan, X. Teng, Y. Zhang, et al., Nano Energy 94 (2022) 106913.
doi: 10.1016/j.nanoen.2021.106913
H.D. Mai, S. Jeong, G.N. Bae, et al., J. Alloys Compd. 942 (2023) 169035.
doi: 10.1016/j.jallcom.2023.169035
Y. Pei, B. Rezaei, X. Zhang, et al., Mater. Chem. Front. 4 (2020) 2665–2672.
doi: 10.1039/d0qm00326c
C. Zhang, Y. Cui, Y. Yang, et al., Adv. Funct. Mater. 31 (2021) 2105372.
doi: 10.1002/adfm.202105372
R.T. Liu, Z.L. Xu, F.M. Li, et al., Chem. Soc. Rev. 52 (2023) 5652–5683.
doi: 10.1039/d2cs00681b
Q. Feng, X.Z. Yuan, G. Liu, et al., J. Power Sources 366 (2017) 33–55.
doi: 10.1016/j.jpowsour.2017.09.006
Z.Y. Wu, F.Y. Chen, B. Li, et al., Nat. Mater. 22 (2023) 100–108.
doi: 10.1038/s41563-022-01380-5
W. Li, H. Tian, L. Ma, et al., Mater. Adv. 3 (2022) 5598–5644.
doi: 10.1039/d2ma00185c
M. Ni, M.K.H. Leung, D.Y.C. Leung, Int. J. Hydrogen Energy 33 (2008) 2337–2354.
doi: 10.1016/j.ijhydene.2008.02.048
J. Kibsgaard, I. Chorkendorff, et al., Nat. Energy 4 (2019) 430–433.
doi: 10.1038/s41560-019-0407-1
Y. Luo, Z. Zhang, M. Chhowalla, et al., Adv. Mater. 34 (2022) 2108133.
doi: 10.1002/adma.202108133
J.W.D. Ng, M. García-Melchor, M. Bajdich, et al., Nat. Energy 1 (2016) 16053.
doi: 10.1038/nenergy.2016.53
P. Liu, J. Wang, X. Wang, et al., Int. J. Hydrogen Energy 49 (2024) 285–294.
doi: 10.1016/j.ijhydene.2023.07.253
T. Zhang, J. Jin, J. Chen, et al., Nat. Commun. 13 (2022) 6875.
doi: 10.1038/s41467-022-34619-5
J. Zhao, J. Wang, X. Zheng, et al., Small Methods 7 (2023) 2201362.
doi: 10.1002/smtd.202201362
J. Gu, L. Li, Y. Xie, et al., Nat. Commun. 14 (2023) 5389.
doi: 10.1038/s41467-023-40972-w
Z. Shi, X. Zhang, X. Lin, et al., Nature 621 (2023) 300–305.
doi: 10.1038/s41586-023-06339-3
S. Dong, C. Zhang, Z. Yue, et al., Nano Lett. 22 (2022) 9434–9440.
doi: 10.1021/acs.nanolett.2c03461
N. Ai, S. He, N. Li, et al., J. Power Sources 384 (2018) 125–135.
doi: 10.1016/j.jpowsour.2018.02.082
S. Kim, D.W. Joh, D.Y. Lee, et al., Chem. Eng. J. 410 (2021) 128318.
doi: 10.1016/j.cej.2020.128318
S. Zhang, W. Wang, F. Hu, et al., Nanomicro Lett. 12 (2020) 140.
J. Li, J. Hu, M. Zhang, et al., Nat. Commun. 12 (2021) 3502.
doi: 10.1039/d1qo00111f
M.F. Lagadec, A. Grimaud, et al., Nat. Mater. 19 (2020) 1140–1150.
doi: 10.1038/s41563-020-0788-3
J.T. Ren, L. Wang, L. Chen, et al., Small 19 (2023) 2206196.
doi: 10.1002/smll.202206196
F.N. Khatib, T. Wilberforce, O. Ijaodola, et al., Renew. Sust. Energ. Rev. 111 (2019) 1–14.
doi: 10.1016/j.rser.2019.05.007
M. Chatenet, B.G. Pollet, D.R. Dekel, et al., Chem. Soc. Rev. 51 (2022) 4583–4762.
doi: 10.1039/d0cs01079k
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107