Porous sorbents for direct capture of carbon dioxide from ambient air
-
* Corresponding author.
E-mail address: zhang.xin@bjut.edu.cn (X. Zhang).
Citation:
Yuchen Zhang, Lifeng Ding, Zhenghe Xie, Xin Zhang, Xiaofeng Sui, Jian-Rong Li. Porous sorbents for direct capture of carbon dioxide from ambient air[J]. Chinese Chemical Letters,
;2025, 36(3): 109676.
doi:
10.1016/j.cclet.2024.109676
Z. Yang, C. He, H. Sui, L. He, X.G. Li, J. CO2 Util. 30 (2019) 79–99.
doi: 10.1016/j.jcou.2019.01.004
B. Parkinson, P. Balcombe, J.F. Speirs, A.D. Hawkes, K. Hellgardt, Energy Environ. Sci. 12 (2019) 19–40.
doi: 10.1039/c8ee02079e
M. Fajardy, N.M. Dowell, Energy Environ. Sci. 11 (2018) 1581–1594.
doi: 10.1039/c7ee03610h
S. Szima, S.M. Nazir, S. Cloete, et al., Renew. Sustain. Energy Rev. 110 (2019) 207–219.
doi: 10.1016/j.rser.2019.03.061
G.A. Meehl, T.F. Stocker, W.D. Collins, et al., Climate. Change 2007: The Physical. Science. Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York, 2007, pp. 749–844.
A. Cherevotan, J. Raj, L. Dheer, et al., ACS Energy Lett. 6 (2021) 509–516.
doi: 10.1021/acsenergylett.0c02614
S. CastroPardo, S. Bhattacharyya, R.M. Yadav, et al., Mater Today. 60 (2022) 227–270.
doi: 10.1016/j.mattod.2022.08.018
K. Lackner, H.J. Ziock, P. Grimes, Los Alamos National Lab, United States, 1999.
S. Kar, R. Sen, A. Goeppert, G.K. Surya Prakash, J. Am. Chem. Soc. 140 (2018) 1580–1583.
doi: 10.1021/jacs.7b12183
J.F. Zheng, X.P. Chen, J.L. Ma, Clean Energy Sci. Technol. 1 (2023) 95–119.
M. Steinberg, V.D. Dang, Energy Convers. Manag. 17 (1977) 97–112.
doi: 10.1016/0013-7480(77)90080-8
IEA International Energy Agency (IEA),
B. Sreenivasulu, I. Sreedhar, P. Suresh, K.V. Raghavan, Environ. Sci. Technol. 49 (2015) 12641–12661.
doi: 10.1021/acs.est.5b03149
C.H. Yu, C.H. Huang, C.S. Tan, Aerosol Air Qual. Res. 12 (2012) 745–769.
doi: 10.4209/aaqr.2012.05.0132
R.M. Firdaus, A. Desforges, A.R. Mohamed, B. Vigolo, J. Clean. Prod. 328 (2021) 129553.
doi: 10.1016/j.jclepro.2021.129553
M. Oschatz, M. Antonietti, Energ Environ. Sci. 11 (2018) 57–70.
doi: 10.1039/c7ee02110k
O. Shekhah, Y. Belmabkhout, Z. Chen, et al., Nat. Commun. 5 (2014) 4228.
doi: 10.1038/ncomms5228
L. Zou, Y. Sun, S. Che, et al., Adv. Mater. 29 (2017) 1700229.
doi: 10.1002/adma.201700229
Y. Zeng, R. Zou, Y. Zhao, Adv. Mater. 28 (2016) 2855–2873.
doi: 10.1002/adma.201505004
J. Přech, P. Pizarro, D.P. Serrano, J. Čejka, Chem. Soc. Rev. 47 (2018) 8263–8306.
doi: 10.1039/c8cs00370j
Q. Liu, A. MacE, Z. Bacsik, et al., Chem. Commun. 46 (2010) 4502–4504.
doi: 10.1039/c000900h
P. Vasiliev, O. Cheung, Z. Bacsik, Zeolite type a sorbent: U.S. 2017, Patent Application, pp. 552.
X.J. Xiang, T. Guo, Y.M. Yin, et al., Ind. Eng. Chem. Res. 62 (2023) 5420–5429.
doi: 10.1021/acs.iecr.2c04458
K.S. Kencana, K.C. Kemp, S.B. Hong, Sep. Purif. Technol. 329 (2024) 125154.
doi: 10.1016/j.seppur.2023.125154
J.Y. Wu, X.C. Zhu, Y.L. Chen, R.Z. Wang, T.S. Ge, Chem. Eng. J. 450 (2022) 137958.
doi: 10.1016/j.cej.2022.137958
H. Azarabadi, K.S. Lackner, Appl. Energy 250 (2019) 959–975.
doi: 10.1016/j.apenergy.2019.04.012
N. Von Der Assen, P. Voll, M. Peters, A. Bardow, Chem. Soc. Rev. 24 (2014) 7982–7994.
M.M. Sadiq, M.P. Batten, X. Mulet, et al., Adv. Sustain. Syst. 4 (2020) 2000101.
doi: 10.1002/adsu.202000101
L. Liu, H.L. Zhang, G.X. Wang, et al., J. Mater. Sci. 52 (2017) 9640–9647.
doi: 10.1007/s10853-017-1093-7
H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112 (2012) 673–674.
doi: 10.1021/cr300014x
N.T. Cervin, C. Aulin, P.T. Larsson, L. Wågberg, Cellulose 19 (2012) 401–410.
doi: 10.1007/s10570-011-9629-5
S. Gaikwad, Y. Kim, R. Gaikwad, S. Han, J. Environ. Eng. 9 (2021) 1023.
doi: 10.1016/j.jece.2021.105523
A. Sayari, Y. Belmabkhout, R. Serna-Guerrero, Chem. Eng. J. 171 (2011) 760–774.
doi: 10.1016/j.cej.2011.02.007
X. Zhang, R.B. Lin, J. Wang, et al., Adv. Mater. 32 (2020) 1907995.
doi: 10.1002/adma.201907995
P.M. Bhatt, Y. Belmabkhout, A. Cadiau, et al., J. Am. Chem. Soc. 138 (2016) 9301–9307.
doi: 10.1021/jacs.6b05345
A. Kumar, C. Hua, D.G. Madden, et al., Chem. Commun. 53 (2017) 5946–5949.
doi: 10.1039/C7CC02289A
P. Li, H.C. Zeng, Environ. Sci. Technol. 51 (2017) 12998–13007.
doi: 10.1021/acs.est.7b03308
J.B. Lin, T.T.T. Nguyen, R. Vaidhyanathan, et al., Science 374 (2021) 1464–1469.
doi: 10.1126/science.abi7281
H.T. An, X. Zhang, C. Dong, et al., Green Chem. Eng. 4 (2023) 64–72.
doi: 10.1117/12.2667622
T. Laing, C. Hen, X. Li, J. Zhang, Langmuir 32 (2016) 8042–8049.
doi: 10.1021/acs.langmuir.6b01953
Takashi Kyotani, Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology, Elsevier Science, 2003, pp. 109–127.
Y. Li, X. Wang, M. Cao, J. CO2 Util. 27 (2018) 204–216.
doi: 10.1145/3210240.3210346
M.L. Yang, L.P. Guo, G.S. Hu, et al., J. Am. Chem. Soc. 55 (2016) 757–765.
doi: 10.1021/acs.iecr.5b04038
O.H.P. Gunawardene, C.A. Gunathilake, K. Vikrant, S.M. Amaraweera, Atmosphere 13 (2022) 397.
doi: 10.3390/atmos13030397
B. Zhang, Y. Jiang, R. Balasubramanian, Resour. Conserv. Recycl. 185 (2022) 106453.
doi: 10.1016/j.resconrec.2022.106453
K.S. Song, P.W. Fritz, A. Coskun, Chem. Soc. Rev. 51 (2022) 9831–9852.
doi: 10.1039/d2cs00727d
D.J. Heldebrant, P.K. Koech, V.A. Glezakou, et al., Chem. Rev. 117 (2017) 9594–9624.
doi: 10.1021/acs.chemrev.6b00768
Y.H. Abdelmoaty, T.D. Tessema, F.A. Choudhury, O.M. El-Kadri, H.M. El-Kaderi, ACS Appl. Mater. Interfaces 10 (2018) 16049–16058.
doi: 10.1021/acsami.8b03772
X. Zhu, C. Tian, G.M. Veith, et al., J. Am. Chem. Soc. 138 (2016): 11497–11500.
doi: 10.1021/jacs.6b07644
X. Wang, T. He, J. Hu, M. Liu, Environ. Sci. Nano 8 (2021) 890–912.
doi: 10.1039/d0en01140a
E.S. Sanz-Perez, C.R. Murdock, S.A. Didas, C.W. Jones, Chem. Rev. 116 (2016) 11840–11876.
doi: 10.1021/acs.chemrev.6b00173
V. Nikulshina, C. Gebald, A. Steinfeld, Chem. Eng. J. 146 (2009) 244–248.
doi: 10.1016/j.cej.2008.06.005
R.S. Liu, S. Xu, G.P. Hao, A.H. Lu, Chem. Res. Chin. Univ. 38 (2021) 18–30.
A.S. Bhown, B.C. Freeman, Environ. Sci. Technol. 45 (2011) 8624–8632.
doi: 10.1021/es104291d
N.E. Hadri, D.V. Quang, E.L.V. Goetheer, M.R.M. Abu Zahra, Appl. Energy 185 (2017) 1433–1449.
doi: 10.1016/j.apenergy.2016.03.043
K.S. Lakhi, G. Singh, S. Kim, et al., Micropor. Mesopor. Mater. 267 (2018) 134–141.
doi: 10.1016/j.micromeso.2018.03.024
G.T. Rochelle, Science 325 (2009) 1652–1654.
doi: 10.1126/science.1176731
H.M. Stowe, G.S.H. Wang, Ind. Eng. Chem. Res. 56 (2017) 6887–6899.
doi: 10.1021/acs.iecr.7b00213
M. Zhao, J. Xiao, W. Gao, Q. Wang, J. Energy Chem. 68 (2022) 401–410.
doi: 10.1016/j.jechem.2021.12.031
B. Barkakaty, B.G. Sumpter, I.N. Ivanov, et al., Environ. Technol. Innov. 7 (2017) 30–43.
doi: 10.1016/j.eti.2016.12.001
L. Jiang, W. Liu, R.Q. Wang, et al., Prog. Energy Combust. 95 (2023) 101069.
doi: 10.1016/j.pecs.2022.101069
A.A. Azmi, M.A.A. Aziz, J. Environ. Chem. Eng. 7 (2019) 103022.
doi: 10.1016/j.jece.2019.103022
G. Gómez-Pozuelo, E.S. Sanz-Pérez, A. Arencibia, et al., Micropor. Mesopor. Mater. 282 (2019) 38–47.
doi: 10.1016/j.micromeso.2019.03.012
A. Heydari-Gorji, Y. Belmabkhout, A. Sayari, Langmuir 27 (2011) 12411–12416.
doi: 10.1021/la202972t
J. Yu, S.S.C. Chuang, Ind. Eng. Chem. Res. 56 (2017) 6337–6347.
doi: 10.1021/acs.iecr.7b00715
J. Jason, C.J. Lee, C.H. Yoo, et al., Langmuir 34 (2018) 12279–12292.
doi: 10.1021/acs.langmuir.8b02472
X. Xu, C. Song, J.M. Andresen, Energy Fuels 16 (2002) 1463–1469.
doi: 10.1021/ef020058u
X. Guo, L. Ding, K. Kanamori, K. Nakanishi, H. Yang, Micropor. Mesopor. Mater. 245 (2017) 51–57.
doi: 10.1016/j.micromeso.2017.02.076
C. Ji, X. Huang, L. Li, et al., Materials 9 (2016) 835.
doi: 10.3390/ma9100835
R. Kishor, A.K. Ghoshal, Chem. Eng. J. 300 (2016) 236–244.
doi: 10.1016/j.cej.2016.04.055
D. Panda, S. Singh, E. Kumar, IOP Conf. Ser.: Mater. Sci. Eng. 2018, 12148.
doi: 10.1088/1757-899x/377/1/012148
E. Vilarrasa-Garcia, E.O. Moya, J. Cecilia, et al., Micropor. Mesopor. Mater. 209 (2015) 172–183.
doi: 10.1016/j.micromeso.2014.08.032
Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Chem. Eng. Sci. 65 (2010) 3695–3698.
doi: 10.1016/j.ces.2010.02.044
Y.S. Ok, D.C. Tsang, N. Bolan, J.M. Novak, Biochar from Biomass and Waste: Fundamentals and Applications, Candice, India, 2018.
Y.C. Ng, L.Z. Yang, Z.R. Jovanovic, Ind. Eng. Chem. Res. 57 (2018) 13987–13998.
doi: 10.1021/acs.iecr.8b01508
N.A.D. Ho, C.P. Leo, Environ. Res. 197 (2021) 111100.
doi: 10.1016/j.envres.2021.111100
S.K. Xian, Y. Wu, J.L. Wu, X. Wang, J. Xiao, Ind. Eng. Chem. Res. 54 (2015) 11151–11158.
doi: 10.1021/acs.iecr.5b03517
S. Xian, F. Xu, C. Ma, et al., Chem. Eng. J. 280 (2015) 363–369.
doi: 10.1016/j.cej.2015.06.042
A. Demessence, D.M. D'Alessandro, M.L. Foo, J.R. Long, J. Am. Chem. Soc. 131 (2009) 8784–8786.
doi: 10.1021/ja903411w
S. Choi, T. Watanabe, T.H. Bae, D.S. Sholl, W.J. Christopher, J. Phys. Chem. Lett. 3 (2012) 1136–1141.
doi: 10.1021/jz300328j
N. Wang, A. Mundstock, Y. Liu, A.S. Huang, J. Caro, Chem. Eng. Sci. 124 (2015) 27–36.
doi: 10.1016/j.ces.2014.10.037
X. Wang, H. Li, X.J. Hou, J. Phys. Chem. C 116 (2012) 19814–19821.
doi: 10.1021/jp3052938
L.A. Darunte, A.D. Oetomo, K.S. Walton, D.S. Sholl, W.J. Christopher, ACS Sustain. Chem. Eng. 4 (2016) 5761–5768.
doi: 10.1021/acssuschemeng.6b01692
M. Anbia, V. Hoseini, J. Nat. Gas Chem. 21 (2012) 339–343.
doi: 10.1016/S1003-9953(11)60374-5
W.S. Drisdell, R. Poloni, T.M. McDonald, et al., Phys. Chem. Chem. Phys. 17 (2015) 21448–21457.
doi: 10.1039/C5CP02951A
T.M. McDonald, W.R. Lee, J.A. Mason, et al., J. Am. Chem. Soc. 134 (2012) 7056–7065.
doi: 10.1021/ja300034j
Y. Lin, H. Lin, H. Wang, et al., J. Mater. Chem. A 2 (2014) 14658–14665.
doi: 10.1039/C4TA01174K
C. Montoro, E. Garcia, S. Calero, et al., J. Mater. Chem. 22 (2012) 10155–10158.
doi: 10.1039/c2jm16770k
P.Q. Liao, X.W. Chen, S.Y. Liu, et al., Chem. Sci. 7 (2016) 6528–6533.
doi: 10.1039/C6SC00836D
P.J. Milner, J.D. Martell, R.L. Siegelman, et al., Chem. Sci. 9 (2018) 160–174.
doi: 10.1039/C7SC04266C
R.L. Siegelman, T.M. McDonald, M.I. Gonzalez, et al., J. Am. Chem. Soc. 139 (2017) 10526–10538.
doi: 10.1021/jacs.7b05858
E.J. Kim, R.L. Siegelman, H.Z.H. Jiang, et al., Science 369 (2020) 392–396.
doi: 10.1126/science.abb3976
P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature 396 (1998) 152–155.
doi: 10.1038/24132
L.M. He, W.L. Jiang, J.C. Li, Petrol. Sci. Technol. 51 (2022) 83–91.
doi: 10.1117/12.2643256
T.M. GüR, Prog. Energy Combust. Sci. 89 (2022) 100965.
doi: 10.1016/j.pecs.2021.100965
S. Lee, S. Park, J. Ind. Eng. Chem. 23 (2015) 1–11.
doi: 10.1016/j.jiec.2014.09.001
G. Wang, Y. Guo, J. Yu, et al., Chem. Eng. J. 428 (2022) 132110.
doi: 10.1016/j.cej.2021.132110
Y. Guo, C. Tan, Wang P, et al., Chem. Eng. J. 379 (2020) 122277.
doi: 10.1016/j.cej.2019.122277
A.M. Alkadhem, M.A.A. Elgzoly, S.A. Onaizi, J. Environ. Chem. Eng. 8 (2020) 103968.
doi: 10.1016/j.jece.2020.103968
A.M. Alkadhem, M.A.A. Elgzoly, A. Alshami, S.A. Onaizi, Colloids Surf. A 616 (2021) 126258.
doi: 10.1016/j.colsurfa.2021.126258
X.C. Zhu, T.S. Ge, F. Yang, et al., J. Mater. Chem. A 8 (2020) 16421–16428.
doi: 10.1039/d0ta05079b
A. Lund, G.V. Manohara, A.Y. Song, et al., Chem. Mater. 34 (2022) 3893–3901.
doi: 10.1021/acs.chemmater.1c03101
C.A. García-González, M. Alnaief, I. Smirnova, Carbohyd. Polym. 86 (2011) 1425–1438.
doi: 10.1016/j.carbpol.2011.06.066
N. Li, W. Chen, G. Chen, X.F. Wan, J.F. Tian, ACS Sustain. Chem. Eng. 6 (2018) 6370–6377.
doi: 10.1021/acssuschemeng.8b00146
C. Gebald, J.A. Wurzbacher, A. Borgschulte, Environ. Sci. Technol. 48 (2014) 2497–2504.
doi: 10.1021/es404430g
H. Sehaqui, M. E.Gálvez, V. Becatinni, et al., Environ. Sci. Technol. 49 (2015) 3167–3174.
doi: 10.1021/es504396v
K. Oksman, Y. Aitomäki, A.P. Mathew, et al., Compos. Part A 83 (2016) 2–18.
doi: 10.1016/j.compositesa.2015.10.041
X. Yang, S.K. Biswas, J. Han, et al., Adv. Mater. 33 (2021) 2002264.
doi: 10.1002/adma.202002264
Y. Wang, B. Liu, X.A. Zhao, et al., Nat. Commun. 9 (2018) 4058–4065.
doi: 10.1038/s41467-018-06433-5
M.T. Dunstan, F. Donat, A.H. Bork, C.P. Grey, C.R. Müller, Chem. Rev. 121 (2021) 12681–12745.
doi: 10.1021/acs.chemrev.1c00100
Y. Hu, Y. Guo, J. Sun, H.L. Li, W.Q. Liu, J. Mater. Chem. A 7 (2019) 20103–20120.
doi: 10.1039/c9ta06930e
J. Elfving, J. Kauppinen, M. Jegoroff, et al., Chem. Eng. J. 404 (2021) 126337.
doi: 10.1016/j.cej.2020.126337
K.J. An, K. Li, C.M. Yang, J. Brechtl, K. Nawaz, J. CO2 Util. 76 (2023) 102587.
doi: 10.1016/j.jcou.2023.102587
S.M.W. Wilson, F.H. Tezel, Ind. Eng. Chem. Res. 59 (2020) 8783–8794.
doi: 10.1021/acs.iecr.9b04803
M. Guo, H. Wu, L. Lv, et al., ACS Appl. Mater. Interfaces 13 (2021) 21775–21785.
doi: 10.1021/acsami.1c03661
A. Oda, S. Hiraki, E. Harada, et al., J. Mater. Chem. A 9 (2021) 7531.
doi: 10.1039/d0ta09944a
W. Chaikittisilp, H.J. Kim, C.W. Jones, Energy Fuels 25 (2011) 5528–5537.
doi: 10.1021/ef201224v
D.L. Fu, Y. Park, M.E. Davis, PNAS 119 (2022) e2211544119.
doi: 10.1073/pnas.2211544119
D.L. Fu, Y. Park, M.E. Davis, Angew. Chem. Int. Ed. 61 (2022) e202112916.
doi: 10.1002/anie.202112916
C. Chen, Q. Jiang, H. Xu, Z. Lin, Ind. Eng. Chem. Res. 58 (2019) 1773–1777.
doi: 10.1021/acs.iecr.8b05239
A.M. Wright, Z. Wu, G. Zhang, et al., Chem 4 (2018) 2894–2901.
doi: 10.1016/j.chempr.2018.09.011
D.R. Kumar, C. Rosu, A.R. Sujan, et al., ACS Sustain. Chem. Eng. 8 (2020) 10971–10982.
E.S. Sanz-Pérez, A. Fernández, A. Arencibia, G. Calleja, R. Sanz, Chem. Eng. J. 373 (2019) 1286–1294.
doi: 10.1016/j.cej.2019.05.117
A. Sujan, S.H. Pang, G. Zhu, C.W. Jones, R.P. Lively, ACS Sustain. Chem. Eng. 7 (2019) 5264–5273.
doi: 10.1021/acssuschemeng.8b06203
A. Sayari, Q. Liu, P. Mishra, ChemSusChem 9 (2016) 2796–2803.
doi: 10.1002/cssc.201600834
J.M. Youn, G. Arvind, J.R. Matthew, C.W. Jones, ACS Appl. Mater. Interfaces 14 (2022) 40992–41002.
doi: 10.1021/acsami.2c11143
W. Lu, J.P. Sculley, D. Yuan, et al., Angew. Chem. Int. Ed. 51 (2012) 7480.
doi: 10.1002/anie.201202176
Y. Yang, C.Y. Chuah, T.H. Bae, Chem. Eng. J. 358 (2019) 1227.
doi: 10.1007/s10450-019-00110-9
D. Lee, C. Zhang, H. Gao, Macromol. Chem. Phys. 216 (2015) 489.
doi: 10.1002/macp.201400504
L. Wang, Q. Xiao, D. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 36652.
doi: 10.1021/acsami.0c11180
C. Xu, Z. Bacsik, N. Hedin, J. Mater. Chem. A 3 (2015) 16229.
doi: 10.1039/C5TA01321F
W.G. Lu, J.L.P. Sculley, D.Q. Yuan, R. Krishna, H.C. Zhou, J. Phys. Chem. C 117 (2013) 4057–4061.
doi: 10.1021/jp311512q
J. Young, F. Mcilwaine, B. Smit, S. Garcia, M. van der Spek, Chem. Eng. J. 456 (2023) 141035.
doi: 10.1016/j.cej.2022.141035
S.M. Moosavi, B.Á. Novotny, D. Ongari, et al., Nature 21 (2022) 1419–1425.
doi: 10.1038/s41563-022-01374-3
N. O'Reilly, N. Giri, S.L. James, Chem. Eur. J. 13 (2007) 3020–3025.
doi: 10.1002/chem.200700090
T.D. Bennett, F.X. Coudert, S.L. James, A.I. Cooper, Nat. Mater. 20 (2021) 1179–1187.
doi: 10.1038/s41563-021-00957-w
H. Mahdavi, S.J.D. Smith, X. Mulet, M.R. Hill, Mater. Horiz. 9 (2022) 1577–1601.
doi: 10.1039/d1mh01616d
Y. Ding, L. Ma, X. Yang, et al., Energy 263 (2023) 125742.
doi: 10.1016/j.energy.2022.125742
D.C. Wang Y.P. Ying, Y.Y. Xin, et al., Acc. Mater. Res. 4 (2023) 854–866.
doi: 10.1021/accountsmr.3c00106
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555