Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces
-
* Corresponding authors.
E-mail addresses: zhaochenxu@xatu.edu.cn (C. Zhao), ful263@nenu.edu.cn (L. Fu).
Citation:
Chaozheng He, Menghui Xi, Chenxu Zhao, Ran Wang, Ling Fu, Jinrong Huo. Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces[J]. Chinese Chemical Letters,
;2025, 36(3): 109671.
doi:
10.1016/j.cclet.2024.109671
L. Fu, R. Wang, C.X. Zhao, et al., Chem. Eng. J. 414 (2021) 128857.
doi: 10.1016/j.cej.2021.128857
J. Huo, L. Fu, C. Zhao, et al., Chin. Chem. Lett. 32 (2021) 2269–2273.
doi: 10.1016/j.cclet.2020.12.059
R. Wang, C. He, W. Chen, et al., Chin. Chem. Lett. 32 (2021) 3821–3824.
doi: 10.1016/j.cclet.2021.05.024
J. Li, S. Chen, F. Quan, et al., Chem 6 (2020) 885–901.
doi: 10.3390/polym12040885
V. Rosca, M. Duca, M.T. de Groot, et al., Chem. Rev. 109 (2009) 2209–2244.
doi: 10.1021/cr8003696
S. Licht, B. Cui, B. Wang, et al., Science 345 (2014) 637–640.
doi: 10.1126/science.1254234
X. Lu, J. Zhang, W.K. Chen, et al., Nanoscale Adv. 3 (2021) 1624–1632.
doi: 10.1039/d1na00015b
Z. Huang, M. Rafiq, A.R. Woldu, et al., Coord. Chem. Rev. 478 (2023) 214981.
doi: 10.1016/j.ccr.2022.214981
Y. Ying, K. Fan, X. Luo, et al., Mater. Adv. 1 (2020) 1285–1292.
doi: 10.1039/d0ma00348d
M. Bat-Erdene, G. Xu, M. Batmunkh, et al., J. Mater. Chem. A 8 (2020) 4735–4739.
doi: 10.1039/c9ta13485a
T. Lan, Y. Zhao, J. Deng, et al., Catal. Sci. Technol. 10 (2020) 5792–5810.
doi: 10.1039/d0cy01137a
C. He, J. Wang, L. Fu, et al., Chin. Chem. Lett. 33 (2022) 1051–1057.
doi: 10.1016/j.cclet.2021.09.009
Z. Chen, J. Zhao, C.R. Cabrera, et al., Small Methods 3 (2018) 1800368.
Z. Chen, J. Zhao, L. Yin, et al., J. Mater. Chem. A 7 (2019) 13284–13292.
doi: 10.1039/c9ta01410a
Z.M. Zhang, X. Yao, X.Y. Lang, et al., Appl. Surf. Sci. 536 (2021) 147706.
doi: 10.1016/j.apsusc.2020.147706
C. He, H. Wang, L. Fu, et al., Chin. Chem. Lett. 33(2022) 990–994.
doi: 10.1016/j.cclet.2021.09.049
X. Lv, W. Wei, B. Huang, et al., Nano Lett. 21 (2021) 1871–1878.
doi: 10.1021/acs.nanolett.0c05080
D. Ma, Y. Wang, L. Liu, et al., Phys. Chem. Chem. Phys. 23 (2021) 4018–4029.
doi: 10.1039/d0cp04843g
H. Shen, C. Choi, J. Masa, et al., Chem 7 (2021) 1708–1754.
doi: 10.1016/j.chempr.2021.01.009
X. Zheng, Y. Liu, Y. Yao, Chem. Eng. J. 426 (2021) 130745.
doi: 10.1016/j.cej.2021.130745
Y. Meng, T. Wang, J. Chen, et al., Appl. Surf. Sci. 640 (2023) 158470.
doi: 10.1016/j.apsusc.2023.158470
X. Liu, Y. Geng, R. Hao, et al., Progr. Chem. 33 (2021) 1074–1091.
L. Niu, L. An, X. Wang, et al., J. Energy Chem. 61 (2021) 304–318.
doi: 10.1016/j.jechem.2021.01.018
C. He, R. Sun, L. Fu, et al., Chin. Chem. Lett. 33 (2022) 527–532.
doi: 10.1016/j.cclet.2021.05.072
L. Lin, L. Yan, L. Fu, et al., Fuel 308 (2022) 122068.
doi: 10.1016/j.fuel.2021.122068
L. Han, X. Liu, J. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 2321–2325.
doi: 10.1002/anie.201811728
S. Assad, T. Tariq, M. Zaeem Idrees, et al., J. Electroanal. Chem. 931 (2023) 117174.
doi: 10.1016/j.jelechem.2023.117174
M.A. Mushtaq, M. Arif, G. Yasin, et al., Renew. Sust. Energy Rev.176 (2023) 113197.
doi: 10.1016/j.rser.2023.113197
G. Kour, X. Mao, A. Du, J. Mater. Chem. A 10 (2022) 6204–6215.
doi: 10.1039/d1ta08246a
Q. Qin, T. Heil, M. Antonietti, et al., Small Methods. 2 (2018) 1800202.
doi: 10.1002/smtd.201800202
C.Z. He, H. Wang, L.Y. Huai, et al., J. Chem. Phys. 138 (2013) 144703.
doi: 10.1063/1.4798970
Y. Doi, M. Haneda, Catal. Today 303 (2018) 8–12.
doi: 10.1016/j.cattod.2017.07.023
D.L.S. Nieskens, D. Curulla-Ferré, J.W. Niemantsverdriet, ChemPhysChem 7 (2006) 1075–1080.
doi: 10.1002/cphc.200600005
C. He, H. Wang, H. Huai, J. Liu, et al., Chem. J. Chin. Univ. 34 (2013) 946–951.
A.L. Strickler, R.A. Flores, L.A. King, et al., ACS Appl. Mater. Interfaces 11 (2019) 34059–34066.
doi: 10.1021/acsami.9b13697
C.Z. He, H. Wang, P. Zhu, et al., J. Chem. Phys. 135 (2011) 204707.
doi: 10.1063/1.3663621
W. Song, Z. Fu, X. Liu, et al., J. Mater. Chem. A 10 (2022) 13946–13957.
doi: 10.1039/d2ta02642b
W. Song, W. Peng, P. Ma, et al., SSRN Electron. J. 597 (2022) 153678.
C. Wang, B. Yan, J. Zheng, et al., Adv. Powder Mater. 1 (2022) 100018.
doi: 10.1016/j.apmate.2021.11.005
J. Yu, C. He, J. Huo, et al., Int. J. Hydrog. Energy 47 (2022) 7738–7750.
doi: 10.1016/j.ijhydene.2021.12.095
J. Yu, C. He, C. Pu, et al., Chin. Chem. Lett. 32 (2021) 3149–3154.
doi: 10.1016/j.cclet.2021.02.046
D. Ma, W. Ju, Y. Tang, et al., Appl. Surf. Sci. 426 (2017) 244–252.
doi: 10.1016/j.apsusc.2017.07.198
C. He, R. Wang, H. Yang, et al., Appl. Surf. Sci. 507 (2020) 145076.
doi: 10.1016/j.apsusc.2019.145076
J.R. Huo, J. Wang, H.Y. Yang, et al., J. Mol. Model. 27 (2021) 38.
doi: 10.1007/s00894-020-04628-6
C. He, R. Wang, D. Xiang, et al., Appl. Surf. Sci. 509 (2020) 145392.
doi: 10.1016/j.apsusc.2020.145392
G.R. Xu, H. Li, A.S.R. Bati, et al., J. Mater. Chem. A 8 (2020) 15875–15883.
doi: 10.1039/d0ta03237a
M. Gao, Da. Wen, Guo. Cao, et al., Appl. Surf. Sci. 640 (2023) 158286.
doi: 10.1016/j.apsusc.2023.158286
L. Fu, L. Yan, L. Lin, et al., J. Alloys Compd. 875 (2021) 159907.
doi: 10.1016/j.jallcom.2021.159907
F. Rao, G. Zhu, W. Zhang, et al., ACS Catal. 11 (2021) 7735–7749.
doi: 10.1021/acscatal.1c01251
I.A. Erikat, B.A. Hamad, J.M. Khalifeh, Eur. Phys. J. B 87 (2014) 48.
doi: 10.1140/epjb/e2014-40566-x
Z. Zhao, T. Yu, S. Zhang, et al., J. Mater. Chem. A 7 (2019) 405–411.
doi: 10.1039/c8ta09155b
H. Wu, Q.Q. Luo, R.Q. Zhang, et al., Chin. J. Chem. Phys. 31 (2018) 641–648.
doi: 10.1063/1674-0068/31/cjcp1804063
W. Luo, Y. Wang, C. Cheng, Mater. Today Phys. 15 (2020) 100274.
doi: 10.1016/j.mtphys.2020.100274
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026