Recent advances in near infrared (NIR) electrochemiluminescence luminophores
-
* Corresponding authors.
E-mail addresses: zhouyuyang@mail.usts.edu.cn (Y. Zhou), xujj@nju.edu.cn (J.-J. Xu).
Citation: Yuyang Zhou, Ziwang Mao, Jing-Juan Xu. Recent advances in near infrared (NIR) electrochemiluminescence luminophores[J]. Chinese Chemical Letters, ;2024, 35(11): 109622. doi: 10.1016/j.cclet.2024.109622
S.K. Lee, M.M. Richter, L. Strekowski, et al., Anal. Chem. 69 (1997) 4126–4133.
doi: 10.1021/ac9704570
A.M. Spehar-Deleze, Y. Pellegrin, T.E. Keyes, et al., Electrochem. commun. 10 (2008) 984–986.
doi: 10.1016/j.elecom.2008.03.001
L. Sun, L. Bao, B.R. Hyun, et al., Nano Lett. 9 (2009) 789–793.
doi: 10.1021/nl803459b
K.N. Swanick, M. Hesari, M.S. Workentin, et al., J. Am. Chem. Soc. 134 (2012) 15205–15208.
doi: 10.1021/ja306047u
L. Zhao, X. Song, X. Ren, et al., Anal. Chem. 93 (2021) 8613–8621.
doi: 10.1021/acs.analchem.1c01531
J. Wang, H. Han, Rev. Anal. Chem. 32 (2013) 91–101.
N.E. Tokel, A.J. Bard, J. Am. Chem. Soc. 94 (1972) 2862–2863.
doi: 10.1021/ja00763a056
D.R. Deaver, Nature 377 (1995) 758–760.
doi: 10.1038/377758a0
A. Juris, V. Balzani, F. Barigelletti, et al., Coord. Chem. Rev. 84 (1988) 85–277.
doi: 10.1016/0010-8545(88)80032-8
A.M. Spehar-Deleze, Y. Lu, T. Keyes, et al., ECS Trans. 16 (2009) 69.
J.W. Wu, W.J. Mei, Z.H. Yan, et al., J. Electroanal. Chem. 697 (2013) 21–27.
doi: 10.1016/j.jelechem.2013.03.013
L. D'Alton, P. Nguyen, S. Carrara, et al., Electrochim. Acta 379 (2021) 138117.
doi: 10.1016/j.electacta.2021.138117
M. Majuran, G. Armendariz-Vidales, S. Carrara, et al., ChemPlusChem 85 (2020) 346–352.
doi: 10.1002/cplu.201900637
Y.Y. Zhou, Y.M. Ding, W. Zhao, et al., Chem. Commun. 57 (2021) 1254–1257.
doi: 10.1039/D0CC07595G
S. Kwon Lee, A.J. Bard, Anal. Lett. 31 (1998) 2209–2229.
doi: 10.1080/00032719808005297
H. Qi, J.J. Teesdale, R.C. Pupillo, et al., J. Am. Chem. Soc. 135 (2013) 13558–13566.
doi: 10.1021/ja406731f
M. Hesari, J.S. Lu, S. Wang, et al., Chem. Commun. 51 (2015) 1081–1084.
doi: 10.1039/C4CC08671F
R. Ishimatsu, H. Shintaku, Y. Kage, et al., J. Am. Chem. Soc. 141 (2019) 11791–11795.
doi: 10.1021/jacs.9b05245
R.R. Maar, R. Zhang, D.G. Stephens, et al., Angew. Chem. Int. Ed. 58 (2019) 1052–1056.
doi: 10.1002/anie.201811144
M.E. Williams, R.W. Murray, Chem. Mater. 10 (1998) 3603–3610.
doi: 10.1021/cm980366z
Y. Song, W. Zhang, S. He, et al., ACS Appl. Mater. Interfaces 11 (2019) 33676–33683.
doi: 10.1021/acsami.9b11416
W. Zhang, Y. Song, S. He, et al., Nanoscale 11 (2019) 20910–20916.
doi: 10.1039/C9NR06812K
Y. Wang, Y. Li, W. Zhang, et al., Analyst 146 (2021) 3679–3685.
doi: 10.1039/D1AN00410G
J. Bosson, G.M. Labrador, S. Pascal, et al., Chem. Eur. J. 22 (2016) 18394– 18403.
doi: 10.1002/chem.201603591
H. Li, A. Wallabregue, C. Adam, et al., J. Phys. Chem. C 121 (2017) 785–792.
doi: 10.1021/acs.jpcc.6b11831
S. Voci, R. Duwald, S. Grass, et al., Chem. Sci. 11 (2020) 4508–4515.
doi: 10.1039/D0SC00853B
H. Li, R. Duwald, S. Pascal, et al., Chem. Commun. 56 (2020) 9771–9774.
doi: 10.1039/D0CC04156D
R. Jin, C. Zeng, M. Zhou, et al., Chem. Rev. 116 (2016) 10346–10413.
doi: 10.1021/acs.chemrev.5b00703
M. Hesari, M.S. Workentin, Z. Ding, Chem. Sci. 5 (2014) 3814–3822.
doi: 10.1039/C4SC01086H
M. Hesari, M.S. Workentin, Z. Ding, Chem. Eur. J. 20 (2014) 15116–15121.
doi: 10.1002/chem.201404870
M. Hesari, Z. Ding, M.S. Workentin, Organometallics 33 (2014) 4888–4892.
doi: 10.1021/om500112j
M. Hesari, M.S. Workentin, Z. Ding, ACS Nano 8 (2014) 8543–8553.
doi: 10.1021/nn503176g
M. Hesari, Z. Ding, Acc. Chem. Res. 50 (2017) 218–230.
doi: 10.1021/acs.accounts.6b00441
H. Peng, M. Jian, H. Deng, et al., ACS Appl. Mater. Interfaces 9 (2017) 14929–14934.
doi: 10.1021/acsami.7b02446
T. Wang, D. Wang, J.W. Padelford, et al., J. Am. Chem. Soc. 138 (2016) 6380–6383.
doi: 10.1021/jacs.6b03037
J.M. Kim, S. Jeong, J.K. Song, et al., Chem. Commun. 54 (2018) 2838–2841.
doi: 10.1039/C7CC09394B
H. Peng, Z. Huang, Y. Sheng, et al., Angew. Chem. Int. Ed. 58 (2019) 11691–11694.
doi: 10.1002/anie.201905007
L. Yu, Q. Zhang, Q. Kang, et al., Anal. Chem. 92 (2020) 7581–7587.
doi: 10.1021/acs.analchem.0c00125
H. Jia, S. Yu, L. Yang, et al., ACS Appl. Nano Mater. 4 (2021) 2657–2663.
doi: 10.1021/acsanm.0c03284
H. Peng, M. Lai, H. Wang, et al., Anal. Chem. 95 (2023) 11106–11112.
doi: 10.1021/acs.analchem.3c01945
Y. Nie, Y. Zhang, W. Cao, et al., Anal. Chem. 95 (2023) 6785–6790.
doi: 10.1021/acs.analchem.2c04939
Y. Zhou, S. Chen, X. Luo, et al., Anal. Chem. 90 (2018) 10024–10030.
doi: 10.1021/acs.analchem.8b02642
Y. Jia, L. Yang, J. Xue, et al., ACS Sens 4 (2019) 1909–1916.
doi: 10.1021/acssensors.9b00870
H. Jia, J. Li, L. Yang, et al., Anal. Chem. 94 (2022) 7132–7139.
doi: 10.1021/acs.analchem.2c01162
L. Yu, M. Li, Q. Kang, et al., Biosens. Bioelectron. 176 (2021) 112934.
doi: 10.1016/j.bios.2020.112934
H. Lv, R. Zhang, S. Cong, et al., Anal. Chem. 94 (2022) 4538–4546.
doi: 10.1021/acs.analchem.2c00475
J. Liu, R. Zhao, X. Wang, et al., Chem. Commun. 56 (2020) 5665–5668.
doi: 10.1039/D0CC02047H
S. Chen, H. Ma, J.W. Padelford, et al., J. Am. Chem. Soc. 141 (2019) 9603–9609.
doi: 10.1021/jacs.9b02547
L. Fu, X. Gao, S. Dong, et al., Anal. Chem. 93 (2021) 4909–4915.
doi: 10.1021/acs.analchem.0c05187
H. Jia, L. Yang, D. Fan, et al., Sens. Actuators B: Chem. 367 (2022) 132034.
doi: 10.1016/j.snb.2022.132034
L.L. Chen, L. Zhao, Z.G. Wang, et al., Small 18 (2022) e2104567.
doi: 10.1002/smll.202104567
J. Yao, L. Li, P. Li, et al., Nanoscale 9 (2017) 13364–13383.
doi: 10.1039/C7NR05233B
N. Pradhan, S. Das Adhikari, A. Nag, et al., Angew. Chem. Int. Ed. 56 (2017) 7038–7054.
doi: 10.1002/anie.201611526
Z. Ding, B.M. Quinn, S.K. Haram, et al., Science 296 (2002) 1293–1297.
doi: 10.1126/science.1069336
C. Ding, Y. Huang, Z. Shen, et al., Adv. Mater. 33 (2021) e2007768.
doi: 10.1002/adma.202007768
S. Xu, J. Cui, L. Wang, Trends Analyt. Chem. 80 (2016) 149–155.
doi: 10.1016/j.trac.2015.07.017
J. Wang, X. Jiang, H. Han, et al., Electrochem. Commun. 13 (2011) 359–362.
doi: 10.1016/j.elecom.2011.01.024
J. Wang, H. Han, X. Jiang, et al., Anal. Chem. 84 (2012) 4893–4899.
doi: 10.1021/ac300498v
G.Z. Zou, G.D. Liang, X.L. Zhang, Chem. Commun. 47 (2011) 10115–10117.
doi: 10.1039/c1cc13168k
G. Liang, L. Shen, G. Zou, et al., Chem. Eur. J. 17 (2011) 10213–10215.
doi: 10.1002/chem.201101154
G. Liang, S. Liu, G. Zou, et al., Anal. Chem. 84 (2012) 10645–10649.
doi: 10.1021/ac302236a
G. Zou, X. Tan, X. Long, et al., Anal. Chem. 89 (2017) 13024–13029.
doi: 10.1021/acs.analchem.7b04188
J. Zhou, L. Nie, B. Zhang, et al., Anal. Chem. 90 (2018) 12361–12365.
doi: 10.1021/acs.analchem.8b04424
X. Gao, K. Fu, L. Fu, et al., Biosens. Bioelectron. 150 (2020) 111880.
doi: 10.1016/j.bios.2019.111880
G.X. Liang, L.L. Li, H.Y. Liu, et al., Chem. Commun. 46 (2010) 2974–2976.
doi: 10.1039/c000564a
A.J. Stewart, E.J. O'Reilly, R.D. Moriarty, et al., Electrochim. Acta 157 (2015) 8–14.
doi: 10.1016/j.electacta.2015.01.073
J. Wang, X. Jiang, Sens. Actuators B: Chem. 207 (2015) 552–555.
doi: 10.1016/j.snb.2014.10.112
J. Wang, X. Jiang, H. Han, Biosens. Bioelectron. 82 (2016) 26–31.
doi: 10.1016/j.bios.2016.03.057
X. Long, X. Tan, Y. He, et al., J. Mater. Chem. C 5 (2017) 12393–12399.
doi: 10.1039/C7TC04651K
L. Fu, K. Fu, X. Gao, et al., Anal. Chem. 93 (2021) 2160–2165.
doi: 10.1021/acs.analchem.0c03975
Y.T. Yang, Y.Z. Guo, Z.C. Shen, et al., Anal. Chem. 95 (2023) 9314–9322.
doi: 10.1021/acs.analchem.3c01346
J.L. Liu, J.Q. Zhang, Z.L. Tang, et al., Chem. Sci. 10 (2019) 4497–4501.
doi: 10.1039/C9SC00084D
J. Huan, Q. Liu, A. Fei, et al., Biosens. Bioelectron. 73 (2015) 221–227.
doi: 10.1016/j.bios.2015.06.004
H. Gao, Z. Zhang, Y. Zhang, et al., J. Electroanal. Chem. 886 (2021) 115104.
doi: 10.1016/j.jelechem.2021.115104
D. Jiang, M. Wei, X. Du, et al., Biosens. Bioelectron. 200 (2022) 113917.
doi: 10.1016/j.bios.2021.113917
M. Wei, X. Du, D. Jiang, et al., Biosens. Bioelectron. 236 (2023) 115420.
doi: 10.1016/j.bios.2023.115420
Z. Zhang, D. Jiang, Q. Song, et al., Biosens. Bioelectron. 238 (2023) 115551.
doi: 10.1016/j.bios.2023.115551
L. Yang, C.R. De-Jager, J.R. Adsetts, et al., Anal. Chem. 93 (2021) 12409–12416.
doi: 10.1021/acs.analchem.1c02441
Y. Wang, G. Zhao, H. Chi, et al., J. Am. Chem. Soc. 143 (2021) 504–512.
doi: 10.1021/jacs.0c12449
S.Y. Ji, J.B. Pan, H.Z. Wang, et al., CCS Chem. 4 (2021) 3076–3083.
L. Zhao, X. Song, X. Ren, et al., Biosens. Bioelectron. 191 (2021) 113409.
doi: 10.1016/j.bios.2021.113409
L. Zhao, M. Wang, X. Song, et al., Chem. Eng. J. 434 (2022) 134691.
doi: 10.1016/j.cej.2022.134691
L. Zhao, X. Song, H. Wang, et al., Chem. Eng. J. 446 (2022) 136912.
doi: 10.1016/j.cej.2022.136912
W. Guo, H. Ding, C. Gu, et al., J. Am. Chem. Soc. 140 (2018) 15904–15915.
doi: 10.1021/jacs.8b09422
Y. Zhou, Y. Ding, J. Dong, et al., J. Electroanal. Chem. 895 (2021) 115534.
doi: 10.1016/j.jelechem.2021.115534
Panpan Wang , Hongbao Fang , Mengmeng Wang , Guandong Zhang , Na Xu , Yan Su , Hongke Liu , Zhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099
Rakesh Kumar Gupta , Zhi Wang , Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Miao-Miao Chen , Min-Ling Zhang , Xiao Song , Jun Jiang , Xiaoqian Tang , Qi Zhang , Xiuhua Zhang , Peiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296
Biao Huang , Tao Tang , Fushou Liu , Shi-Hui Chen , Zhi-Ling Zhang , Mingxi Zhang , Ran Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694
Lulu Cao , Yikun Li , Dongxiang Zhang , Shuai Yue , Rong Shang , Xin-Dong Jiang , Jianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735
Xiaoshuai Wu , Bailei Wang , Yichen Li , Xiaoxuan Guan , Mingjing Yin , Wenquan Lv , Yin Chen , Fei Lu , Tao Qin , Huyang Gao , Weiqian Jin , Yifu Huang , Cuiping Li , Ming Gao , Junyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Shangqian Zhang , Jiaxuan Li , Xuan Hu , Zelong Chen , Junliang Dong , Chenhao Hu , Shuang Chao , Yinghua Lv , Yuxin Pei , Zhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209