Citation: Zhao-Bo Hu, Ling-Ao Gui, Long-He Li, Tong-Tong Xiao, Adam T. Hand, Pagnareach Tin, Mykhaylo Ozerov, Yan Peng, Zhongwen Ouyang, Zhenxing Wang, Zi-Ling Xue, You Song. Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process[J]. Chinese Chemical Letters, ;2025, 36(2): 109600. doi: 10.1016/j.cclet.2024.109600 shu

Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process

Figures(6)

  • Two Co-based complexes, {[Co(dps)2(N3)2]·H2O} (1) and [Co(dps)2(N3)2] (2), show a 1D chain and a 3D network, respectively. The central Co ions in the complexes have the same coordination environment with the [Co(dps)4(N3)2] unit. Although the differences in crystal parameters are nearly negligible, their magnetic properties are very different. AC susceptibility data show that 1 behaves as a typical field-induced single-ion magnet (SIM) with the out-of-phase (χM'') signals, while 2 shows ac signals of χM'' without peaks even under applied dc filed within our measurement window. Far-IR magneto-spectra (FIRMS) show strong spin-phonon couplings at 0 T in 2, likely making the magnetic relaxation in 2 fast, while the couplings are negligible in 1. Small spin-phonon coupling in 1 likely leads to slower magnetic relaxation, making 1 a SIM. The difference in the properties is due to the structural rigidity of 2 in its 3D network, leading to stronger spin-phonon coupling. Combined high-field EPR (HF-EPR) and FIRMS studies give spin-Hamiltonian parameters, including D = 64.0(9) cm-1, E = 15.7(2) cm-1 for 1 and D = 80.0(2) cm-1, E = 19.0(1) cm-1 for 2.
  • 加载中
    1. [1]

      W. Wernsdorfer, R. Sessoli, Science 284 (1999) 133.

    2. [2]

      R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature 365 (1993) 141.

    3. [3]

      M.L. Kirk, D.A. Shultz, D.E. Stasiw, et al., J. Am. Chem. Soc. 135 (2013) 14713–14725.  doi: 10.1021/ja405354x

    4. [4]

      D.N. Woodruff, R.E.P. Winpenny, R.A. Layfield, Chem. Rev. 113 (2013) 5110–5148.  doi: 10.1021/cr400018q

    5. [5]

      A.J. Heinrich, W.D. Oliver, L.M.K. Vandersypen, et al., Nat. Nanotechnol. 16 (2021) 1318–1329.  doi: 10.1038/s41565-021-00994-1

    6. [6]

      T. Yamabayashi, M. Atzori, L. Tesi, et al., J. Am. Chem. Soc. 140 (2018) 12090–12101.  doi: 10.1021/jacs.8b06733

    7. [7]

      Q.C. Luo, N. Ge, Y.Q. Zhai, et al., Chin. Chem. Lett. 34 (2023) 107547.

    8. [8]

      S. Li, Z.Z. Weng, L.P. Jiang, et al., Chin. Chem. Lett. 34 (2023) 107251.

    9. [9]

      Y. Jiao, Y. Li, Y. Zhou, et al., Chin. Chem. Lett. 34 (2023) 109082.

    10. [10]

      S. Yu, Z. Chen, H. Hu, et al., Dalton Trans. 48 (2019) 16679–16686.  doi: 10.1039/c9dt03253c

    11. [11]

      Z. Chen, S. Yu, R. Wang, et al., Dalton Trans. 48 (2019) 6627–6637.  doi: 10.1039/c9dt00364a

    12. [12]

      Z.B. Hu, Z.Y. Jing, M.M. Li, et al., Inorg. Chem. 57 (2018) 10761–10767.  doi: 10.1021/acs.inorgchem.8b01389

    13. [13]

      Z.B. Hu, X. Feng, J. Li, et al., Dalton Trans. 49 (2020) 2159–2167.  doi: 10.1039/c9dt04403e

    14. [14]

      J.L. Liu, Y.C. Chen, M.L. Tong, Chem. Soc. Rev. 47 (2018) 2431–2453.  doi: 10.1039/c7cs00266a

    15. [15]

      M. Briganti, E. Lucaccini, L. Chelazzi, et al., J. Am. Chem. Soc. 143 (2021) 8108–8115.  doi: 10.1021/jacs.1c02502

    16. [16]

      M. Feng, M.L. Tong, Chem. Eur. J. 24 (2018) 7574–7594.  doi: 10.1002/chem.201705761

    17. [17]

      Y.S. Meng, S.D. Jiang, B.W. Wang, S. Gao, Acc. Chem. Res. 49 (2016) 2381–2389.  doi: 10.1021/acs.accounts.6b00222

    18. [18]

      C.A. Gould, K.R. McClain, D. Reta, et al., Science 375 (2022) 198–202.  doi: 10.1126/science.abl5470

    19. [19]

      F.S. Guo, B.M. Day, Y.C. Chen, et al., Science 362 (2018) 1400–1403.  doi: 10.1126/science.aav0652

    20. [20]

      Y.S. Ding, N.F. Chilton, R.E.P. Winpenny, Y.Z. Zheng, Angew. Chem. Int. Ed. 55 (2016) 16071–16074.  doi: 10.1002/anie.201609685

    21. [21]

      L. Zhu, Y. Dong, B. Yin, P. Ma, D. Li, Dalton Trans. 50 (2021) 12607–12618.  doi: 10.1039/d1dt00964h

    22. [22]

      J. Wang, Q.W. Li, S.G. Wu, et al., Angew. Chem. Int. Ed. 60 (2021) 5299–5306.  doi: 10.1002/anie.202014993

    23. [23]

      S.K. Gupta, R. Murugavel, Chem. Commun. 54 (2018) 3685–3696.  doi: 10.1039/c7cc09956h

    24. [24]

      M. He, F.S. Guo, J. Tang, A. Mansikkamäki, R.A. Layfield, Chem. Commun. 57 (2021) 6396–6399.  doi: 10.1039/d1cc02139g

    25. [25]

      M. He, F.S. Guo, J. Tang, A. Mansikkamäki, R.A. Layfield, Chem. Sci. 11 (2020) 5745–5752.  doi: 10.1039/d0sc02033h

    26. [26]

      J.P. Durrant, J. Tang, A. Mansikkamäki, R.A. Layfield, Chem. Commun. 56 (2020) 4708–4711.  doi: 10.1039/d0cc01722a

    27. [27]

      M. Briganti, F. Santanni, L. Tesi, et al., J. Am. Chem. Soc. 143 (2021) 13633–13645.  doi: 10.1021/jacs.1c05068

    28. [28]

      A. Lunghi, F. Totti, R. Sessoli, S. Sanvito, Nat. Commun. 8 (2017) 14620.

    29. [29]

      J. Li, S. J Xiong, C. Li, et al., CCS Chem. 2 (2020) 2548–2556.  doi: 10.3390/app10072548

    30. [30]

      Q. Chen, F. Ma, Y.S. Meng, et al., Inorg. Chem. 55 (2016) 12904–12911.  doi: 10.1021/acs.inorgchem.6b02276

    31. [31]

      Q. Chen, J. Li, Y.S. Meng, et al., Inorg. Chem. 55 (2016) 7980–7987.  doi: 10.1021/acs.inorgchem.6b01014

    32. [32]

      Q. Chen, Y.S. Meng, Y.Q. Zhang, et al., Chem. Commun. 50 (2014) 10434–10437.

    33. [33]

      C. Li, J. Sun, M. Yang, et al., Cryst. Growth Des. 16 (2016) 7155–7162.  doi: 10.1021/acs.cgd.6b01369

    34. [34]

      Y. Rechkemmer, F.D. Breitgoff, M. van der Meer, et al., Nat. Comm. 7 (2016) 10467.

    35. [35]

      D.H. Moseley, S.E. Stavretis, K. Thirunavukkuarasu, et al., Nat. Comm. 9 (2018) 2572.

    36. [36]

      D.H. Moseley, S.E. Stavretis, Z. Zhu, et al., Inorg. Chem. 59 (2020) 5218–5230.  doi: 10.1021/acs.inorgchem.0c00523

    37. [37]

      A.N. Bone, C.N. Widener, D.H. Moseley, et al., Chem. Eur. J. 27 (2021) 11110–11125.  doi: 10.1002/chem.202100705

    38. [38]

      J.G.C. Kragskow, J. Marbey, C.D. Buch, et al., Nat. Comm. 13 (2022) 825.

    39. [39]

      D.H. Moseley, Z. Liu, A.N. Bone, et al., Inorg. Chem. 61 (2022) 17123–17136.  doi: 10.1021/acs.inorgchem.2c02604

    40. [40]

      F. Liedy, J. Eng, R. McNab, et al., Nat. Chem. 12 (2020) 452–458.  doi: 10.1038/s41557-020-0431-6

    41. [41]

      X.Z. Luo, S. Xin, J.H. Yu, J Chin, Inorg. Chem. 26 (2010) 1299–1302.

    42. [42]

      N.F. Chilton, R.P. Anderson, L.D. Turner, A. Soncini, K.S. Murray, J. Comput. Chem. 34 (2013) 1164–1175.  doi: 10.1002/jcc.23234

    43. [43]

      The SPIN program was developed by Dr. Andrzej Ozarowski to "simulates powder or single-crystal EPR spectra for spin states with ½ < S < 5. " It is free at https://nationalmaglab.org/user-facilities/emr/software/.

    44. [44]

      L. Chen, J. Wang, J.M. Wei, et al., J. Am. Chem. Soc. 136 (2014) 12213–12216.  doi: 10.1021/ja5051605

    45. [45]

      A.N. Bone, S.E. Stavretis, J. Krzystek, et al., Polyhedron 184 (2020) 114488.

    46. [46]

      C.N. Widener, A.N. Bone, M. Ozerov, et al., Chin. J. Inorg. Chem. 35 (2020) 1149–1156.

    47. [47]

      S.E. Stavretis, D.H. Moseley, F. Fei, et al., Chem. Eur. J. 25 (2019) 15846–15857.  doi: 10.1002/chem.201903635

    48. [48]

      P. Tin, S.E. Stavretis, M. Ozerov, et al., Appl. Mang. Reson. 51 (2020) 1411–1432.  doi: 10.1007/s00723-020-01236-8

    49. [49]

      J. Vallejo, M. Viciano-Chumillas, F. Lloret, et al., Inorg. Chem. 58 (2019) 15726–15740.  doi: 10.1021/acs.inorgchem.9b01719

    50. [50]

      P. Tin, A.N. Bone, N.N. Bui, et al., J. Phys. Chem. B 126 (2022) 13268–13283.  doi: 10.1021/acs.jpcc.2c03083

    51. [51]

      Y.N. Guo, G.F. Xu, Y. Guo, J. Tang, Dalton Trans. 40 (2011) 9953–9963.  doi: 10.1039/c1dt10474h

    52. [52]

      A. Albino, S. Benci, L. Tesi, et al., Inorg. Chem. 58 (2019) 10260–10268.  doi: 10.1021/acs.inorgchem.9b01407

    53. [53]

      F. Santanni, A. Albino, M. Atzori, et al., Inorg. Chem. 60 (2021) 140–151.  doi: 10.1021/acs.inorgchem.0c02573

    54. [54]

      A. Lunghi, S. Sanvito, J. Chem. Phys. 153 (2020) 174113.

  • 加载中
    1. [1]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    2. [2]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    3. [3]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    4. [4]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    5. [5]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    6. [6]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    7. [7]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    8. [8]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    9. [9]

      Yijia JiaoYuzhu LiYuting ZhouPeipei CenYi DingYan GuoXiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082

    10. [10]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    11. [11]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    12. [12]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    13. [13]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    14. [14]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    15. [15]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    16. [16]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    17. [17]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    18. [18]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    19. [19]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    20. [20]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

Metrics
  • PDF Downloads(1)
  • Abstract views(175)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return