The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction
-
* Corresponding authors.
E-mail addresses: zhuyanwei@hnu.edu.cn (Y. Zhu), wanglonglu@njupt.edu.cn (L. Wang).
Citation:
Junan Pan, Xinyi Liu, Huachao Ji, Yanwei Zhu, Yanling Zhuang, Kang Chen, Ning Sun, Yongqi Liu, Yunchao Lei, Kun Wang, Bao Zang, Longlu Wang. The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction[J]. Chinese Chemical Letters,
;2024, 35(11): 109515.
doi:
10.1016/j.cclet.2024.109515
S. Wang, J. Li, S. Hu, et al., ACS Appl. Nano Mater. 5 (2022) 2273–2279.
H. Wang, C. Tsai, D. Kong, et al., Nano Res. 8 (2015) 566–575.
doi: 10.1007/s12274-014-0677-7
D. Saha, V. Patel, P.R. Selvaganapathy, et al., Nanoscale Adv. 4 (2022) 125–137.
doi: 10.1039/D1NA00456E
X. Liu, B. Li, F.A. Soto, et al., ACS Catal. 11 (2021) 12159–12169.
doi: 10.1021/acscatal.1c03016
S. Cao, A. Deshmukh, L. Wang, et al., Environ. Sci. Technol. 56 (2022) 8807–8818.
doi: 10.1021/acs.est.2c00551
Y. Chen, Z. Tian, X. Wang, et al., Adv. Mater. 34 (2022) 2201630.
doi: 10.1002/adma.202201630
J. Cho, H. Seok, I. Lee, et al., Sci. Rep. 12 (2022) 10335.
doi: 10.1038/s41598-022-14233-7
L. Wang, X. Liu, Q. Zhang, et al., Nano Energy 61 (2019) 194–200.
doi: 10.1016/j.nanoen.2019.04.060
S.H. Kim, J. Lim, R. Sahu, et al., Adv. Mater. 32 (2020) 1907235.
doi: 10.1002/adma.201907235
L. Xie, L. Wang, W. Zhao, et al., Nat. Commun. 12 (2021) 5070.
doi: 10.1038/s41467-021-25381-1
G. Zhou, Y. Shan, L. Wang, et al., Nat. Commun. 10 (2019) 399.
doi: 10.1038/s41467-019-08358-z
J. Tang, Z. Wei, Q. Wang, et al., Small 16 (2020) 2004276.
doi: 10.1002/smll.202004276
M. Tayyab, A. Hussain, W.A. Syed, et al., J. Mol. Model. 27 (2021) 213.
doi: 10.1007/s00894-021-04834-w
Z. Wei, J. Tang, X. Li, et al., Small Methods 5 (2021) 2100091.
doi: 10.1002/smtd.202100091
K. Vega-Granados, Y. Gochi-Ponce, N. Alonso-Vante, Curr. Opin. Electrochem. 33 (2022) 100955.
doi: 10.1016/j.coelec.2022.100955
Y. Li, K. Yin, L. Wang, et al., Appl. Catal. B 239 (2018) 537–544.
doi: 10.1016/j.apcatb.2018.05.080
L. Wang, Q. Zhang, J. Zhu, et al., Energy Stor. Mater. 16 (2019) 37–45.
L. Wang, X. Liu, J. Luo, et al., Angew. Chem. Int. Ed. 129 (2017) 7718–7722.
doi: 10.1002/ange.201703066
K. Sun, Y. Liu, C. Liu, IOP Conf. Ser. : Earth Environ. Sci. 252 (2019) 022136.
doi: 10.1088/1755-1315/252/2/022136
S. Wang, D. Zhang, B. Li, et al., Adv. Energy Mater. 8 (2018) 1801345.
doi: 10.1002/aenm.201801345
J. Pan, P. Wang, Z. Chen, Mater. Today Chem. 21 (2021) 100528.
doi: 10.1016/j.mtchem.2021.100528
L. Pang, A. Barras, Y. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 31889–31898.
doi: 10.1021/acsami.9b09112
A. Muthurasu, V. Maruthapandian, H.Y. Kim, Appl. Catal. B: Environ. 248 (2019) 202–210.
doi: 10.1016/j.apcatb.2019.02.014
M.S. Kim, D.T. Tran, T.H. Nguyen, Energy Environ. Mater. 5 (2022) 1340–1349.
doi: 10.1002/eem2.12366
N. Zhang, Z. Yang, W. Liu, Catalysts 13 (2023) 90.
doi: 10.3390/catal13010090
I.S. Amiinu, Z. Pu, X. Liu, Adv. Funct. Mater. 27 (2017) 1702300–1702310.
doi: 10.1002/adfm.201702300
Q. Ji, M. Kan, Y. Zhang, et al., Nano Lett. 15 (2014) 198–205.
Z. Yang, X. Xia, M. Fang, et al., Chem. Eng. J. 476 (2023) 146544.
doi: 10.1016/j.cej.2023.146544
Z. Yang, X. Xia, M. Fang, et al., Mater. Today Phys. 36 (2023) 101158.
doi: 10.1016/j.mtphys.2023.101158
X. Liu, Y. Hou, M. Tang, et al., Chin. Chem. Lett. 34 (2023) 107489.
doi: 10.1016/j.cclet.2022.05.003
J. Chen, Y. Tang, S. Wang, et al., Chin. Chem. Lett. 33 (2022) 1468–1474.
doi: 10.1016/j.cclet.2021.08.103
C. Sun, L. Wang, W. Zhao, et al., Adv. Funct. Mater. 32 (2022) 2206163.
doi: 10.1002/adfm.202206163
M. Liu, H. Li, S. Liu, et al., Nano Res. 15 (2022) 5946–5952.
doi: 10.1007/s12274-022-4267-9
X. Cheng, L. Wang, L. Xie, et al., Chem. Eng. J. 439 (2022) 135757.
doi: 10.1016/j.cej.2022.135757
S. Wang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 4996–5003.
doi: 10.1007/s12274-022-4158-0
C. Chang, L. Wang, L. Xie, et al., Nano Res. 15 (2022) 8613–8635.
doi: 10.1007/s12274-022-4507-z
R. Sukanya, D.C. da Silva Alves, C.B. Breslin, J. Electrochem. Soc. 169 (2022) 064504.
doi: 10.1149/1945-7111/ac7172
D.J. Trainer, J. Nieminen, F. Bobba, et al., npj 2D Mater. Appl. 6 (2022) 13.
doi: 10.1038/s41699-022-00286-9
P. Vancsó, G. Magda, J. Pető, et al., Sci. Rep. 6 (2016) 29726.
doi: 10.1038/srep29726
G. Wang, Y.P. Wang, S. Li, et al., Adv. Sci. 9 (2022) 2200700.
doi: 10.1002/advs.202200700
N. Sun, C. Gu, H.C. Ji, et al., Desalination 575 (2024) 117270.
doi: 10.1016/j.desal.2023.117270
X. Wu, Y. Gu, R. Ge, et al., Npj 2D Mater. Appl. 6 (2022) 31.
doi: 10.1038/s41699-022-00306-8
F. Zakerian, M. Fathipour, R. Faez, et al., J. Theoret. Appl. Phys. 13 (2019) 55–62.
doi: 10.1007/s40094-019-0320-9
J. Du, D. Xiang, K. Zhou, et al., Nano Energy (2022) 107875.
G. Shao, X. Xue, B. Wu, Adv. Funct. Mater. 30 (2020) 1906069.
doi: 10.1002/adfm.201906069
G. Shao, X. Xue, X. Zhou, ACS Nano 13 (2019) 8265–8274.
doi: 10.1021/acsnano.9b03648
J. Xu, G. Shao, Tang X, et al., Nat. Commun. 13 (2022) 2193.
doi: 10.1038/s41467-022-29929-7
X. Chen, B. Lei, Y. Zhu, et al., Nanoscale 12 (2020) 17005–17012.
doi: 10.1039/D0NR03530K
Z. Cheng, Y. Xiao, W. Wu, et al., ACS Nano 15 (2021) 11417–11427.
doi: 10.1021/acsnano.1c01024
Z. Guo, L. Wang, M. Han, et al., ACS Nano 16 (2022) 11268–11277.
doi: 10.1021/acsnano.2c04664
Q. Han, H. Cao, Y. Sun, et al., Phys. Chem. Chem. Phys. 24 (2022) 13305–13316.
doi: 10.1039/D2CP00705C
Z. Lai, Q. He, T.H. Tran, et al., Nat. Mater. 20 (2021) 1113–1120.
doi: 10.1038/s41563-021-00971-y
X. Gong, Z. Jiang, W. Zeng, Nano Lett. 22 (2022) 9411–9417.
doi: 10.1021/acs.nanolett.2c03359
M. Mathankumar, K. Karthick, A.K. Nanda Kumar, et al., ACS Sustain. Chem. Eng. 9 (2021) 14744–14755.
doi: 10.1021/acssuschemeng.1c04106
K. Nie, X. Qu, D. Gao, et al., ACS Appl. Mater. Interfaces 14 (2022) 19847–19856.
doi: 10.1021/acsami.2c01358
M. Okada, J. Pu, Y.C. Lin, et al., ACS Nano 16 (2022) 13069–13081.
doi: 10.1021/acsnano.2c05699
J. Pan, R. Wang, X. Xu, et al., Nanoscale 11 (2019) 10402–10409.
doi: 10.1039/C9NR00997C
J. Pan, W. Zhang, X. Xu, et al., RSC Adv. 11 (2021) 23055–23063.
doi: 10.1039/D1RA03821D
B. Mohanty, M. Ghorbani-Asl, S. Kretschmer, ACS Catal. 8 (2018) 1683–1689.
doi: 10.1021/acscatal.7b03180
Q. Peng, X. Qi, X. Gong, et al., Materials (Basel) 14 (2021) 4073.
J. Seok, J.H. Lee, S. Cho, et al., 2D Mater. 4 (2017) 025061.
doi: 10.1088/2053-1583/aa659d
Y. Shi, D. Zheng, X. Zhang, et al., Chem. Mater. 33 (2021) 6217–6226.
doi: 10.1021/acs.chemmater.1c01965
G. Zhan, J.F. Zhang, Y. Wang, J. Colloid Interf. Sci. 566 (2020) 411–418.
doi: 10.1016/j.jcis.2020.01.109
Z.M. Sun, J.L. He, M.W. Yuan, Nano Energy 65 (2019) 103996.
doi: 10.1016/j.nanoen.2019.103996
J. Strachan, A.F. Masters, T. Maschmeyer, ACS Appl. Nano Mater. 4 (2021) 2030–2036.
doi: 10.1021/acsanm.0c03355
Y. Yu, G.H. Nam, Q. He, et al., Nat. Chem. 10 (2018) 638–643.
doi: 10.1038/s41557-018-0035-6
X. Zhao, S. Ning, W. Fu, et al., Adv. Mater. 30 (2018) 1802397.
doi: 10.1002/adma.201802397
F. He, Y. Liu, Q. Cai, J. Zhao, New J. Chem. 44 (2020) 16135–16143.
doi: 10.1039/D0NJ03645E
A. Mahmood, G. Lu, X. Wang, J. Power Sources 551 (2022) 232208.
doi: 10.1016/j.jpowsour.2022.232208
Q. Fu, J. Han, X. Wang, et al., Adv. Mater. 33 (2021) 1907818.
doi: 10.1002/adma.201907818
S. Ramaraj, D. Alves, C. Breslin, J. Electrochem. Soc. 169 (2022) 10402–10409.
L. Wang, L. Xie, W. Zhao, et al., Chem. Eng. J. 405 (2021) 127028.
doi: 10.1016/j.cej.2020.127028
L. Wang, G. Zhou, H. Luo, et al., Appl. Catal. B 256 (2019) 117802.
doi: 10.1016/j.apcatb.2019.117802
Y. Fu, Y. Shan, G. Zhou, et al., Joule 3 (2019) 2955–2967.
doi: 10.1016/j.joule.2019.09.006
Q.Y. He, L. Wang, K. Yin, et al., Nanoscale Res. Lett. 13 (2018) 167.
doi: 10.1186/s11671-018-2570-x
Y. Li, L. Wang, S. Zhang, et al., Catal. Sci. Technol. 7 (2017) 718–724.
doi: 10.1039/C6CY02649D
C. Sun, M. Liu, L. Wang, et al., Chin. Chem. Lett. 33 (2022) 1779–1797.
doi: 10.1016/j.cclet.2021.08.052
Q. Xiong, Y. Wang, P.F. Liu, Adv. Mater. (2018) e1801450.
K. Sathiyan, T. Mondal, P. Mukherjee, Nanoscale 14 (2022) 16148–16155.
doi: 10.1039/D2NR03816A
X. Mu, Y. Zhu, X. Gu, J. Eng. Chem. 62 (2021) 546–551.
D.C. Nguyen, T.L. Luyen Doan, S. Prabhakaran, Nano Energy 82 (2021) 105750.
doi: 10.1016/j.nanoen.2021.105750
M. Tang, W. Yin, S. Liu, et al., Crystals 12 (2022) 1218.
doi: 10.3390/cryst12091218
Z. Sadighi, J. Liu, L. Zhao, Nanoscale 10 (2018) 22549–22559.
doi: 10.1039/C8NR07106C
C. Feng, Z.P. Wu, K.W. Huang, et al., Adv. Mater. 34 (2022) 2200180.
doi: 10.1002/adma.202200180
M. Mao, Z. Lin, Y. Tong, et al., ACS Nano 14 (2020) 1102–1110.
doi: 10.1021/acsnano.9b08848
F. Xia, B. Li, Y. Liu, et al., Adv. Funct. Mater. 31 (2021) 2104716.
doi: 10.1002/adfm.202104716
C. Liu, L. Wang, Y. Tang, et al., Appl. Catal. B 164 (2015) 1–9.
doi: 10.1016/j.apcatb.2014.08.046
L. Wang, X. Duan, G. Wang, et al., Appl. Catal. B 186 (2016) 88–96.
doi: 10.1016/j.apcatb.2015.12.056
J. Li, W. Yin, J. Pan, et al., Nano Res. 16 (2023) 8638–8654.
doi: 10.1007/s12274-023-5610-5
K. Chen, L. Wang, Z. Luo, et al., Adv. Mater. Technol. 8 (2023) 2300189.
doi: 10.1002/admt.202300189
J. Liu, J. Wang, B. Zhang, J. Mater. Chem. A 6 (2018) 2067–2072.
doi: 10.1039/C7TA10048E
Y. Zhang, H. Guo, M. Song, Appl. Surf. Sci. 617 (2023) 156621.
doi: 10.1016/j.apsusc.2023.156621
Y. Liu, Y. Chen, Y. Tian, Adv. Mater. 34 (2022) e2203615.
doi: 10.1002/adma.202203615
Y. Li, Y. Hua, N. Sun, et al., Nano Res. 16 (2023) 8712–8728.
doi: 10.1007/s12274-023-5716-9
W. Chen, J. Du, H. Zhang, et al., Chin. Chem. Lett. (2023) 109168.
A. Pandey, A. Mukherjee, S. Chakrabarty, ACS Appl. Mater. Interfaces 11 (2019) 42094–42103.
doi: 10.1021/acsami.9b13358
Y. Yang, K. Zhang, H. Lin, ACS Catal. 7 (2017) 2357–2366.
doi: 10.1021/acscatal.6b03192
C. Zhao, X. Zhang, S. Xu, Inter. J. Hydrogen Energy 47 (2022) 28859–28868.
doi: 10.1016/j.ijhydene.2022.06.206
M. Zhao, G. Zhou, X. Liu, Inter. J. Electrochem. Sci. 16 (2021) 210323.
doi: 10.20964/2021.03.46
W. Bao, Y. Li, J. Zhang, Int. J. Hydrogen Energy 48 (2023) 12176–12184.
doi: 10.1016/j.ijhydene.2022.12.184
W.H. Huang, X.M. Li, X.F. Yang, Chem. Eng. J. 420 (2021) 127595.
doi: 10.1016/j.cej.2020.127595
L. Wang, X. Liu, J. Luo, et al., Angew. Chem. Int. Ed. 56 (2017) 7610–7614.
doi: 10.1002/anie.201703066
Y. Li, L. Wang, T. Cai, et al., Chem. Eng. J. 321 (2017) 366–374.
doi: 10.1016/j.cej.2017.03.139
L. Wang, Q. Zhang, J. Zhu, et al., Energy Storage Mater. 16 (2019) 37–45.
doi: 10.1016/j.ensm.2018.04.025
L.L. Wang, G. Zhou, H. Luo, et al., Appl. Catal. B 256 (2019) 117802.
doi: 10.1016/j.apcatb.2019.117802
Y. Xu, L. Wang, X. Liu, et al., J. Mater. Chem. A 4 (2016) 16524–16530.
doi: 10.1039/C6TA06534A
Q. Zhang, L. Wang, J. Wang, et al., J. Mater. Chem. A 6 (2018) 9411–9419.
doi: 10.1039/C8TA00995C
Y. Tu, L. Xie, M. Zhang, et al., Nano Res. 17 (2024) 2088–2110.
doi: 10.1007/s12274-023-5946-x
F. Wang, L. Xie, N. Sun, et al., Nano-Micro Lett. 16 (2024) 1–25.
doi: 10.1007/s40820-023-01222-2
C. Wang, X. Shao, J. Pan, Appl. Catal. B: Environ. 268 (2020) 118435.
doi: 10.1016/j.apcatb.2019.118435
C. Wei, C. Liu, L. Gao, J. Alloy. Compd. 796 (2019) 86–92.
doi: 10.1016/j.jallcom.2019.05.071
Z.Y. Zhao, F.L. Li, Q. Shao, Adv. Mater. Interfaces 6 (2019) 1900372.
doi: 10.1002/admi.201900372
M.A.R. Anjum, H.Y. Jeong, M.H. Lee, et al., Adv. Mater. 30 (2018) 1707105.
doi: 10.1002/adma.201707105
J.Z. Chen, G.G. Liu, Y.Z. Zhu, et al., J. Am. Chem. Soc. 142 (2020) 7161–7167.
doi: 10.1021/jacs.0c01649
Y.Q. Li, Z.H. Yin, M. Cui, et al., J. Mater. Chem. A 9 (2021) 2070–2092.
doi: 10.1039/D0TA10815D
Z. Liang, Y. Xue, X. Wang, et al., Chem. Eng. J. 421 (2021) 130016.
doi: 10.1016/j.cej.2021.130016
S. Geng, F. Tian, M. Li, et al., Nano Res. 15 (2022) 1809–1816.
doi: 10.1007/s12274-021-3755-7
T. Sun, Z. Tang, W. Zang, Nat. Nanotechnol. 18 (2023) 763–771.
doi: 10.1038/s41565-023-01407-1
X. Liu, J. Pan, H. Huang, et al., Chem. Eng. J. 476 (2023) 146868.
doi: 10.1016/j.cej.2023.146868
J. Zhou, M. Guo, L. Wang, et al., Chem. Eng. J. 366 (2019) 163–171.
doi: 10.1016/j.cej.2019.02.079
W. Yin, Y. Cai, L. Wang, et al., Nano Res. 16 (2023) 4381–4398.
doi: 10.1007/s12274-022-5133-5
Y. Li, B. Yu, B. Liu, et al., Chem. Eng. J. 452 (2023) 139542.
doi: 10.1016/j.cej.2022.139542
M. Li, W. Yin, J. Pan, et al., Chem. Eng. J. 471 (2023) 144691.
doi: 10.1016/j.cej.2023.144691
L. Xie, L. Wang, X. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202316306.
doi: 10.1002/anie.202316306
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Qiaojia GUO , Junkai CAI , Chunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056