Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method
-
* Corresponding authors.
E-mail addresses: lihaixia@nankai.edu.cn (H. Li), yzh@nankai.edu.cn (Z. Yan).
Citation:
Wenxuan Yang, Long Shang, Xiaomeng Liu, Sihan Zhang, Haixia Li, Zhenhua Yan, Jun Chen. Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method[J]. Chinese Chemical Letters,
;2024, 35(11): 109501.
doi:
10.1016/j.cclet.2024.109501
H. Xu, J. Yuan, G. He, et al., Coord. Chem. Rev. 475 (2023) 214869.
doi: 10.1016/j.ccr.2022.214869
Q. Zhao, Z. Yan, C. Chen, et al., Chem. Rev. 117 (2017) 10121–10211.
doi: 10.1021/acs.chemrev.7b00051
Y. Hao, S.F. Hung, W.J. Zeng, et al., J. Am. Chem. Soc. 145 (2023) 23659–23669.
doi: 10.1021/jacs.3c07777
H. Zhu, S. Zhang, Y.X. Huang, et al., Nano Lett. 13 (2013) 2947–2951.
doi: 10.1021/nl401325u
J. Kim, W. Ko, J.M. Yoo, et al., Adv. Mater. 34 (2022) 2107868.
doi: 10.1002/adma.202107868
G. Wu, J. Wang, W. Ding, et al., Angew. Chem. Int. Ed. 55 (2016) 1340–1344.
doi: 10.1002/anie.201508809
C. Li, X. Han, F. Cheng, et al., Nat. Commun. 6 (2015) 7345.
doi: 10.1038/ncomms8345
X. Wang, M. Yu, X. Feng, eScience 3 (2023) 100141.
doi: 10.1016/j.esci.2023.100141
C. Wei, Z. Feng, G.G. Scherer, et al., Adv. Mater. 29 (2017) 1606800.
doi: 10.1002/adma.201606800
M. Liu, Z. Rong, R. Malik, et al., Energy Environ. Sci. 8 (2015) 964–974.
doi: 10.1039/C4EE03389B
G. Liang, Z. Wu, C. Didier, et al., Angew. Chem. Int. Ed. 59 (2020) 10594–10602.
doi: 10.1002/anie.202001454
L. Shen, L. Yu, X. -Y. Yu, et al., Angew. Chem. Int. Ed. 54 (2015) 1868–1872.
doi: 10.1002/anie.201409776
N. Sun, J. Qiu, B. Xu, Adv. Energy Mater. 12 (2022) 2200715.
doi: 10.1002/aenm.202200715
Y. Wang, Y. Yang, S. Jia, et al., Nat. Commun. 10 (2019) 1506.
doi: 10.1038/s41467-019-09503-4
M. Prabu, K. Ketpang, S. Shanmugam, Nanoscale 6 (2014) 3173–3181.
doi: 10.1039/c3nr05835b
X.T. Wang, T. Ouyang, L. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 6492–6499.
doi: 10.1002/anie.202000690
E.M. Davis, A. Bergmann, C. Zhan, et al., Nat. Commun. 14 (2023) 4791.
doi: 10.1038/s41467-023-40461-0
H. Yang, Y. Liu, X. Liu, et al., eScience 2 (2022) 227–234.
doi: 10.1016/j.esci.2022.02.005
Y. Pei, C.Y. Xu, Y.C. Xiao, et al., Adv. Funct. Mater. 27 (2017) 1604349.
doi: 10.1002/adfm.201604349
P. Venkateswarlu, E. Umeshbabu, U.N. Kumar, et al., J. Colloid Interface Sci. 503 (2017) 17–27.
doi: 10.1016/j.jcis.2017.05.007
L. Lv, Y. Wang, P. Cheng, et al., J. Alloys Compd. 904 (2022) 164054.
doi: 10.1016/j.jallcom.2022.164054
D. Yu, Y. Hao, S. Han, et al., ACS Nano 17 (2023) 1701–1712.
doi: 10.1021/acsnano.2c11939
Y. Hao, D. Yu, S. Zhu, et al., Energy Environ. Sci. 16 (2023) 1100–1110.
doi: 10.1039/D2EE03936B
S. Dou, J. Xu, X. Cui, et al., Adv. Energy Mater. 10 (2020) 2001331.
doi: 10.1002/aenm.202001331
Y. Yao, Z. Huang, P. Xie, et al., Science 359 (2018) 1489–1494.
doi: 10.1126/science.aan5412
T. Li, Y. Yao, B.H. Ko, et al., Adv. Funct. Mater. 31 (2021) 2010561.
doi: 10.1002/adfm.202010561
H. Wu, Q. Lu, Y. Li, et al., Nano Lett. 22 (2022) 6492–6500.
doi: 10.1021/acs.nanolett.2c01147
W. Zhu, J. Zhang, J. Luo, et al., Adv. Mater. 35 (2023) 2208974.
doi: 10.1002/adma.202208974
M. Hong, Q. Dong, H. Xie, et al., ACS Energy Lett. 6 (2021) 3753–3760.
doi: 10.1021/acsenergylett.1c01554
R. Wang, Q. Dong, C. Wang, et al., Adv. Mater. 33 (2021) e2100726.
doi: 10.1002/adma.202100726
Q. Dong, Y. Yao, S. Cheng, et al., Nature 605 (2022) 470–476.
doi: 10.1038/s41586-022-04568-6
F. Cheng, J. Shen, B. Peng, et al., Nat. Chem. 3 (2011) 79–84.
doi: 10.1038/nchem.931
H. Huang, A. Huang, D. Liu, et al., Adv. Mater. 35 (2023) 2303109.
doi: 10.1002/adma.202303109
T. Li, B. Xue, B. Wang, et al., J. Am. Chem. Soc. 139 (2017) 12133–12136.
doi: 10.1021/jacs.7b06587
L. Dai, M. Liu, Y. Song, et al., Nano Energy 27 (2016) 185–195.
doi: 10.1016/j.nanoen.2016.07.007
Y. Liang, Y. Li, H. Wang, et al., Nat. Mater. 10 (2011) 780–786.
doi: 10.1038/nmat3087
Y. Go, K. Min, H. An, et al., Chem. Eng. J. 448 (2022) 137665.
doi: 10.1016/j.cej.2022.137665
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Yu Deng , Yan Liu , Yonghui Deng , Jinsheng Cheng , Yidong Zou , Wei Luo . In situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199