Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect
-
* Corresponding author.
E-mail address: yezhu_1983@163.com (X. Kong).
Citation:
Xingang Kong, Yabei Su, Cuijuan Xing, Weijie Cheng, Jianfeng Huang, Lifeng Zhang, Haibo Ouyang, Qi Feng. Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect[J]. Chinese Chemical Letters,
;2024, 35(11): 109428.
doi:
10.1016/j.cclet.2023.109428
G. Kucinskis, G. Bajars, J. Kleperis, J. Power Sources 240 (2013) 66–79.
doi: 10.1016/j.jpowsour.2013.03.160
N. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Mater. Today 18 (2015) 252–264.
doi: 10.1016/j.mattod.2014.10.040
M. Yilmaz, P.T. Krein, IEEE Trans. Power Electron. 28 (2013) 2151–2169.
doi: 10.1109/TPEL.2012.2212917
Z.H. Rao, S.F. Wang, Renew. Sustain. Energy Rev. 15 (2011) 4554–4571.
doi: 10.1016/j.rser.2011.07.096
L. Zou, F.Y. Kang, X.H. Li, et al., J. Phys. Chem. Solids 69 (2008) 1265–1271.
doi: 10.1016/j.jpcs.2007.10.096
J.X. Zhang, Z.W. Xie, W. Li, S.Q. Dong, M.Z. Qu, Carbon 74 (2014) 153–162.
doi: 10.1016/j.carbon.2014.03.017
C. Shen, G.H. Hu, L.Z. Cheong, et al., Small Methods 2 (2018) 1700298–1700306.
doi: 10.1002/smtd.201700298
C.C. Chen, Y.A. Huang, C.H. An, et al., ChemSusChem 8 (2015) 114–122.
doi: 10.1002/cssc.201402886
X. Kong, J. Zhang, J. Huang, et al., Chin. Chem. Lett. 30 (2019) 771–774.
doi: 10.1016/j.cclet.2018.10.006
H.L. Yu, J.N. Zhao, L.B. Ben, et al., ACS Energy Lett. 2 (2017) 1296–1302.
doi: 10.1021/acsenergylett.7b00273
M. Zier, F. Scheiba, S. Oswald, et al., J. Power Sources 266 (2014) 198–207.
doi: 10.1016/j.jpowsour.2014.04.134
M.S. Park, G.X. Wang, Y.M. Kang, et al., Angew. Chem. Int. Ed. 46 (2007) 750–753.
doi: 10.1002/anie.200603309
S.Z. Liu, K.L. Zhu, J.H. Tian, et al., J. Alloy Compd. 639 (2015) 60–67.
doi: 10.1016/j.jallcom.2015.03.116
Z.L. Yang, S.P. Zhao, W. Jiang, et al., Electrochim. Acta 158 (2015) 321–326.
doi: 10.1016/j.electacta.2015.01.146
Q.N. Liu, Y.H. Dou, B.Y. Ruan, et al., Chem. Eur. J. 22 (2016) 5853–5857.
doi: 10.1002/chem.201505122
X. Xu, J. Liang, H. Zhou, et al., J. Mater. Chem. A 1 (2013) 2995–2998.
doi: 10.1039/c3ta01372c
H.B. Li, J.P. Xiao, Q. Fu, X.H. Bao, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 5930–5934.
doi: 10.1073/pnas.1701280114
X.L. Wang, G.S. Shi, S.S. Liang, et al., Phys. Rev. Lett. 121 (2018) 226102–2261027.
doi: 10.1103/PhysRevLett.121.226102
S. Zhang, T. Hedtke, X. Zhou, M. Elimelech, J.H. Kim, ACS EST Eng. 1 (2021) 706–724.
doi: 10.1021/acsestengg.1c00007
J. Ma, Y.R. Sun, M.Z. Zhang, et al., Environ. Sci. Technol. 51 (2017) 12283–12292.
doi: 10.1021/acs.est.7b02227
X.L. Zhang, J.L. Shen, S.Y. Pan, J.S. Qian, B.C. Pan, Adv. Funct. Mater. 30 (2020) 1909014–1909020.
doi: 10.1002/adfm.201909014
T.K. Vo, D.C. Hau, V.C. Nguyen, D.T. Quang, J. Kim, Appl. Surf. Sci. 546 (2021) 149087–149095.
doi: 10.1016/j.apsusc.2021.149087
C. Ma, J.L. Jiang, T.T. Xu, et al., ChemElectroChem 5 (2018) 2387–2394.
doi: 10.1002/celc.201800610
L. Sun, Z.L. Zhao, Y.C. Zhou, L. Liu, Nanoscale 4 (2012) 613–620.
doi: 10.1039/C1NR11411E
M.L. Lee, C.Y. Su, Y.H. Lin, et al., J. Power Sources 244 (2013) 410–416.
doi: 10.1016/j.jpowsour.2012.12.005
J.F. Ye, W. Liu, J.G. Cai, et al., J. Am. Chem. Soc. 133 (2011) 933–940.
doi: 10.1021/ja108205q
H.W. Chen, Y.D. Lu, H.J. Zhu, et al., Electrochim. Acta 310 (2019) 203–212.
doi: 10.1016/j.electacta.2019.04.134
H.G. Zhang, X.D. Yu, P.V. Braun, Nat. Nanotechnol. 6 (2011) 277–281.
doi: 10.1038/nnano.2011.38
Z. Liang, G. Zheng, W. Li, et al., ACS Nano 8 (2014) 5249–5256.
doi: 10.1021/nn501308m
J.N. Gao, B. Jiang, C.C. Ni, et al., Appl. Catal. B: Environ. 254 (2019) 391–402.
doi: 10.1016/j.apcatb.2019.05.016
V. Perumal, C. Inmozhi, R. Uthrakumar, et al., Environ. Res. 209 (2022) 112821–112830.
doi: 10.1016/j.envres.2022.112821
Y. Liu, Y. Jiao, Z. Zhang, et al., ACS Appl. Mater. Interfaces 6 (2014) 2174–2184.
doi: 10.1021/am405301v
W.J. Cheng, Q. Feng, Z.L. Guo, et al., Chin. Chem. Lett. 33 (2022) 4776–4780.
doi: 10.1016/j.cclet.2022.01.002
X. Shi, S.T. Liu, B. Tang, et al., Chem. Eng. J. 330 (2017) 453–461.
doi: 10.1016/j.cej.2017.07.164
X. Wang, W. Cheng, J. Hu, et al., Nanoscale 14 (2022) 13696–13710.
doi: 10.1039/D2NR03516B
R.Q. Liu, D.Y. Li, C. Wang, et al., Nano Energy 6 (2014) 73–81.
doi: 10.1016/j.nanoen.2014.03.010
W. Jiang, D. Xiong, S. Wu, et al., Ceram. Int. 48 (2022) 27174–27181.
doi: 10.1016/j.ceramint.2022.06.029
B. Wei, S. Yan, D. Jia, et al., Inorg. Chem. Commun. 145 (2022) 2587–2594.
Z.Q. Wang, X. Li, H. Xu, et al., J. Mater. Chem. A 2 (2014) 12571–12575.
doi: 10.1039/C4TA02029D
F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26 (2014) 2219–2251.
doi: 10.1002/adma.201304137
W.J. Cheng, Q. Feng, X. Wang, et al., Electrochim. Acta 440 (2023) 141758–141766.
doi: 10.1016/j.electacta.2022.141758
H. Lindström, S. Södergren, A. Solbrand, et al., J. Phys. Chem. B 101 (1997) 7717–7722.
doi: 10.1021/jp970490q
M. Lubke, P. Marchand, D.J.L. Brett, et al., J. Power Sources 305 (2016) 115–121.
doi: 10.1016/j.jpowsour.2015.11.060
B.L. Corso, I. Perez, T. Sheps, et al., Nano Lett. 14 (2014) 1329–1336.
doi: 10.1021/nl404349g
C. Chen, C.C. Ai, Y.W. He, S. Yang, Y.X. Wu, J. Alloy Compd. 705 (2017) 438–444.
doi: 10.1016/j.jallcom.2017.02.143
X.Y. Du, W. He, X.D. Zhang, et al., J. Mater. Chem. 22 (2012) 5960–5969.
doi: 10.1039/c1jm14758g
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Wendi Dou , Guangying Wan , Tiefeng Liu , Lin Han , Wu Zhang , Chuang Sun , Rensheng Song , Jianhui Zheng , Yujing Liu , Xinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389
Hongmei Yu , Baoxi Zhang , Meiju Liu , Cheng Xing , Guorong He , Li Zhang , Ningbo Gong , Yang Lu , Guanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587