Metal organic framework modulated nanozymes tailored with their biomedical approaches
-
* Corresponding author.
E-mail address: manojsarangi2007@rediffmail.com (M.K. Sarangi).
Citation: Manoj Kumar Sarangi, L․D Patel, Goutam Rath, Sitansu Sekhar Nanda, Dong Kee Yi. Metal organic framework modulated nanozymes tailored with their biomedical approaches[J]. Chinese Chemical Letters, ;2024, 35(11): 109381. doi: 10.1016/j.cclet.2023.109381
N. Stasyuk, O. Smutok, O. Demkiv, et al., Sensors 20 (2020) 1–42.
doi: 10.1109/JSEN.2020.3014328
A.M. Ashrafi, Z. Bytesnikova, J. Barek, L. Richtera, V. Adam, Biosen. Bioelectron. 192 (2021) 113494.
doi: 10.1016/j.bios.2021.113494
N. Stasyuk, O. Smutok, O. Demkiv, et al., Sensors 20 (2020) 4509.
doi: 10.3390/s20164509
X. Huang, S. Zhang, Y. Tang, et al., Coord. Chem. Rev. 449 (2021) 1–24.
M. Liang, X. Yan, Acc. Chem. Res. 52 (2019) 2190–2200.
doi: 10.1021/acs.accounts.9b00140
H. Wei, E. Wang, Chem. Soc. Rev. 42 (2013) 6060–6093.
doi: 10.1039/c3cs35486e
S.S. Lucky, K.C. Soo, Y. Zhang, Chem. Rev. 115 (2015) 1990–2042.
doi: 10.1021/cr5004198
Y. Gao, Y. Zhou, R. Chandrawati, ACS. Appl. Nano Mater. 3 (2020) 1–21.
M.H. Hassan, D. Andreescu, S. Andreescu, ACS. Appl. Nano Mater. 3 (2020) 3288–3294.
doi: 10.1021/acsanm.0c00015
N. Singh, G. Mugesh, Angew. Chem. Int. Ed. 58 (2019) 7797–7801.
doi: 10.1002/anie.201903427
H. Sun, Y.A. Zhou, J. Ren, X. Qu, Angew. Chem. Int. Ed. 57 (2018) 9224–9237.
doi: 10.1002/anie.201712469
L. Ma, M. i. Zhou, C. He, et al., Green Chem. 21 (2019) 4887–4918.
doi: 10.1039/C9GC02266J
Q. Tang, S. Cao, T. Ma, et al., Adv. Funct. Mater. 31 (2021) 1–29.
H. Dong, Y. Fan, W. Zhang, N. Gu, Y. Zhang, Bioconjug. Chem. 30 (2019) 1273–1296.
doi: 10.1021/acs.bioconjchem.9b00171
H. Wang, K. Wan, X. Shi, Adv. Mater. 31 (2019) 1–10.
H.S. Wang, Coord. Chem. Rev. 349 (2017) 139–155.
doi: 10.1016/j.ccr.2017.08.015
X. Tao, X. Wang, B. Liu, J. Liu, Biosens. Bioelectron. 168 (2020) 1–14.
M. Yuan, X. Guo, N. Li, et al., Sens. Actuator B: Chem. 297 (2019) 126809.
doi: 10.1016/j.snb.2019.126809
B. Xu, H. Wang, W. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 4911–4916.
doi: 10.1002/anie.201813994
W. Song, B. Zhao, C.e. Wang, Y. Ozaki, X. Lu, J. Mater. Chem. B 7 (2019) 850–875.
doi: 10.1039/C8TB02878H
L. Hou, G. Jiang, Y. Sun, et al., Catalysts 9 (2019) 1–17.
T. Wang, P. Su, F. Lin, Y. Yang, Y. Yang, Sens. Actuator B: Chem. 254 (2018) 329–336.
doi: 10.1016/j.snb.2017.07.104
H. Li, T. Wang, Y. Wang, et al., Indus. Eng. Chem. Res. 57 (2018) 2416–2425.
doi: 10.1021/acs.iecr.7b04821
S. Wu, D. Guo, X. Xu, J. Pan, X. Niu, Sens. Actuator B: Chem. 303 (2020) 1–8.
Y. Xu, J. Xue, Q. Zhou, et al., Angew. Chem. Int. Ed. 59 (2020) 14498–14503.
doi: 10.1002/anie.202003949
J. Liang, Z. Liang, R. Zou, Y. Zhao, Adv. Mater. 29 (2017) 1701139.
doi: 10.1002/adma.201701139
C.L. Tan, L.Z. Zhao, P. Yu, Angew. Chem. Int. Ed. 56 (2017) 7842–7846.
doi: 10.1002/anie.201703597
L. Zhao, W. Yuan, J. Li, et al., Adv. Funct. Mater. 28 (2018) 1806162.
doi: 10.1002/adfm.201806162
J. Wu, X. Wang, Q. Wang, Chem. Soc. Rev. 48 (2019) 1004–1076.
doi: 10.1039/C8CS00457A
Y. Huang, J. Ren, X. Qu, Chem. Rev. 119 (2019) 4357–4412.
doi: 10.1021/acs.chemrev.8b00672
B. Yang, Y. Chen, J. Shi, Adv. Mater. 31 (2019) 1901778.
doi: 10.1002/adma.201901778
D. Wang, D. Jana, Y. Zhao, Acc. Chem. Res. 53 (2020) 1389–1400.
doi: 10.1021/acs.accounts.0c00268
Y. Qiu, G. Tan, Y. Fang, New J. Chem. 45 (2021) 20987–21000.
doi: 10.1039/D1NJ04045F
Y. Cui, B. Li, H. He, et al., Acc. Chem. Res. 49 (2016) 483–493.
doi: 10.1021/acs.accounts.5b00530
X. Gong, Y. Shu, Z. Jiang, et al., Angew. Chem. Int. Ed. 132 (2020) 5364–5369.
doi: 10.1002/ange.201915537
J. Liu, J. Huang, L. Zhang, J. Lei, Chem. Soc. Rev. 50 (2021) 1188–1218.
doi: 10.1039/D0CS00178C
X. Li, S. Ding, X. Xiao, et al., J. Mater. Chem. A 5 (2017) 12774–12781.
doi: 10.1039/C7TA03004E
Z. Zhao, J. Ding, R. Zhu, H. Pang, J. Mater. Chem. A 7 (2019) 15519–15540.
doi: 10.1039/C9TA03833G
Y. Xu, S. Zheng, H. Tang, et al., Energy Storage Mater. 9 (2017) 11–30.
doi: 10.1016/j.ensm.2017.06.002
X. Zhang, G. Li, D. Wu, Biosens. Bioelectron. 137 (2019) 178–198.
doi: 10.1016/j.bios.2019.04.061
M. Zhu, X. Wu, B. Niu, H. Guo, Y. Zhang, Appl. Organomet. Chem. 32 (2018) e4333.
doi: 10.1002/aoc.4333
S. Abedi, A.A. Tehrani, A. Morsali, New. J. Chem. 39 (2015) 5108–5111.
doi: 10.1039/C5NJ00153F
P. Tong, J. Liang, X. Jiang, J. Li, Crit. Rev. Anal. Chem. 50 (2020) 376–392.
doi: 10.1080/10408347.2019.1642732
Y. Wang, J. Yan, N. Wen, Biomaterials 230 (2020) 119619.
doi: 10.1016/j.biomaterials.2019.119619
Y. Pan, S. Zhan, F. Xia, Anal. Biochem. 546 (2018) 5–9.
doi: 10.1016/j.ab.2018.01.017
T.T. Han, J. Yang, Y.Y. Liu, J.F. Ma, Microp. Mesopor. Mater. 228 (2016) 275–288.
doi: 10.1016/j.micromeso.2016.04.005
T.T. Han, H.L. Bai, Y.Y. Liu, J.F. Ma, J. Solid State Chem. 269 (2019) 588–593.
doi: 10.1016/j.jssc.2018.10.044
P. Ling, J. Lei, H. Ju, Biosens. Bioelectron. 71 (2015) 373–379.
doi: 10.1016/j.bios.2015.04.046
J. Zhang, L. Sun, C. Chen, et al., Alloys Compd. 695 (2017) 520–525.
doi: 10.1016/j.jallcom.2016.11.129
H.J. Buser, D. Schwarzenbach, W. Petter, A.J.I.C. Ludi, Inorg. Chem. 16 (1977) 2704–2710.
doi: 10.1021/ic50177a008
K. Hirai, K. Sumida, M. Meilikhov, J. Mater. Chem. C 2 (2014) 3336–3344.
doi: 10.1039/c3tc32101k
N. Yanai, K. Kitayama, Y. Hijikata, Nat. Mater. 10 (2011) 787–793.
doi: 10.1038/nmat3104
J.W. Ye, X.Y. Li, H.L. Zhou, J.P. Zhang, Sci. China Chem. 62 (2019) 341–346.
doi: 10.1007/s11426-018-9369-6
J.H. Cavka, S. Jakobsen, U.J. Olsbye, Am. Chem. Soc. 130 (2008) 13850–13851.
doi: 10.1021/ja8057953
J.S. Seo, D. Whang, H. Lee, Nature 404 (2000) 982–986.
doi: 10.1038/35010088
O.V. Gutov, W. Bury, D.A. Gomez-Gualdron, Chem. Eur. J. 20 (2014) 12389–12393.
doi: 10.1002/chem.201402895
S. Yang, J. Sun, A.J. Ramirez-Cuesta, Nat. Chem. 4 (2012) 887–894.
doi: 10.1038/nchem.1457
R. Grunker, V. Bon, P. Muller, Chem. Commun. 50 (2014) 3450–3452.
doi: 10.1039/c4cc00113c
T. Ahnfeldt, N. Guillou, D. Gunzelmann, et al., Angew. Chem. Int. Ed. 48 (2009) 5163–5166.
doi: 10.1002/anie.200901409
S.S.Y. Chui, S.M.F. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, Science 283 (1999) 1148–1150.
doi: 10.1126/science.283.5405.1148
S.S. Nadar, L. Vaidya, S. Maurya, V.K. Rathod, Coord. Chem. Rev. 396 (2019) 1–21.
doi: 10.1016/j.ccr.2019.05.011
V.F. Yusuf, N.I. Malek, S.K. Kailasa, ACS Omega 7 (2022) 44507–44531.
doi: 10.1021/acsomega.2c05310
D. Jiang, D. Ni, Z.T. Rosenkrans, et al., Chem. Soc. Rev. 48 (2019) 3683–3704.
doi: 10.1039/C8CS00718G
Y. Hu, H. Cheng, X. Zhao, et al., ACS Nano 11 (2017) 5558–5566.
doi: 10.1021/acsnano.7b00905
X. Yang, J.K. Sun, M. Kitta, H. Pang, Q. Xu, Nat. Catal. 1 (2018) 214–220.
doi: 10.1038/s41929-018-0030-8
K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Chem. Commun. 52 (2016) 473–476.
doi: 10.1039/C5CC07577G
D. Feng, T.F. Liu, J. Su, et al., Nat. Commun. 6 (2015) 1–8.
L. Jiao, G. Wan, R. Zhang, H. Zhou, S.H. Yu, Angew. Chem. Int. Ed. 57 (2018) 8525–8529.
doi: 10.1002/anie.201803262
L. Wang, S. Li, X. Zhang, Y. Huang, Talanta 216 (2020) 121009.
doi: 10.1016/j.talanta.2020.121009
X. Zhao, P. Pachfule, S. Li, J.R.J. Simke, J. Schmidt, Angew. Chem. Int. Ed. 57 (2018) 8921–8926.
doi: 10.1002/anie.201803136
X.F. Lu, L. Yu, X.W. Lou, Sci. Adv. 5 (2019) 1–10.
S. Dang, Q.L. Zhu, Q. Xu, Nat. Rev. Mater. 3 (2018) 17075.
W. Gong, Y. Lin, C. Chen, et al., Adv. Mater. 31 (2019) 1808341.
doi: 10.1002/adma.201808341
X. Niu, Q. Shi, W. Zhu, et al., Biosens. Bioelectron. 142 (2019) 111495.
doi: 10.1016/j.bios.2019.111495
S. Singh, Front. Chem. 7 (2019) 1–10.
doi: 10.3389/fchem.2019.00001
L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Nanoscale 6 (2014) 2588–2593.
doi: 10.1039/C3NR05422E
L. Su, Y. Xiong, H. Yang, P. Zhang, F. Ye, J. Mater. Chem. B 4 (2016) 128–134.
doi: 10.1039/C5TB01924A
Y. Xu, B. Li, S. Zheng, et al., J. Mater. Chem. A 6 (2018) 22070–22076.
doi: 10.1039/C8TA03128B
Q. Li, Z. Shao, T. Han, M. Zheng, H. Pang, Chem. Eng. 7 (2019) 8986–8992.
W. Zhou, H. Li, B. Xia, Nano Res. 11 (2018) 5761–5768.
doi: 10.1007/s12274-017-1623-2
L. Han, H. Zhang, D. Chen, F. Li, Adv. Funct. Mater. 28 (2018) 1800018.
doi: 10.1002/adfm.201800018
M. Li, J. Chen, W. Wu, Y. Fang, S. Dong, J. Am. Chem. Soc. 142 (2020) 15569–15574.
doi: 10.1021/jacs.0c07273
Q. Chen, X. Zhang, S. Li, J. Tan, C. Xu, Chem. Eng. J. 395 (2020) 125130.
doi: 10.1016/j.cej.2020.125130
Y. Liu, X. Wang, H. Wei, Analyst 145 (2020) 4388–4397.
doi: 10.1039/D0AN00389A
F. Cao, Y. Zhang, Y. Sun, Chem. Mater. 30 (2018) 7831–7839.
doi: 10.1021/acs.chemmater.8b03348
X. Pan, L. Bai, H. Wang, Adv. Mater. 30 (2018) 1800180.
doi: 10.1002/adma.201800180
J. Li, T. Li, D. Gorin, et al., Colloids Surf. A: Physicochem. Eng. Asp. 601 (2020) 124990.
doi: 10.1016/j.colsurfa.2020.124990
M. Zhang, F. Wu, W. Wang, et al., Chem. Mater. 31 (2019) 1847–1859.
doi: 10.1021/acs.chemmater.8b00934
D.W. Zheng, Q. i. Lei, J.Y. Zhu, et al., Nano Lett. 17 (2017) 284–291.
doi: 10.1021/acs.nanolett.6b04060
D. Wang, Y. Zhao, Chem 7 (2021) 2635–2671.
doi: 10.1016/j.chempr.2021.08.020
K. Ye, L. Wang, H. Song, X. Li, X. Niu, J. Mater. Chem B 7 (2019) 4794–4800.
doi: 10.1039/C9TB00951E
S. Shams, W. Ahmad, A.H. Memon, et al., RSC Adv. 9 (2019) 40845–40854.
doi: 10.1039/C9RA07473B
M. Comotti, C. DellaPina, R. Matarrese, M. Rossi, Angew. Chem. Int. Ed. 43 (2004) 5812–5815.
doi: 10.1002/anie.200460446
L. He, Q. Ni, J. Mu, J. Am. Chem. Soc. 142 (2020) 6822–6832.
doi: 10.1021/jacs.0c02497
J. Wu, Z. Wang, X. Jin, et al., Adv. Mater. 33 (2021) 2005024.
doi: 10.1002/adma.202005024
X. Xiao, G. Zhang, Y. Xu, et al., J. Mater. Chem. A 7 (2019) 17266–17271.
doi: 10.1039/C9TA05409J
Y. Ding, H. Xu, C. Xu, Adv. Sci. 7 (2020) 2001060.
doi: 10.1002/advs.202001060
H. Chen, T. Yang, F. Liu, W. Li, Sens. Actuator B: Chem. 286 (2019) 401–407.
doi: 10.1016/j.snb.2018.10.036
Y. Wang, Y. Wang, L.I. Zhang, C.S. Liu, H. Pang, Inorg. Chem. Front. 6 (2019) 2514–2520.
S. Li, L. Wang, X. Zhang, H. Chai, Y. Huang, Sens. Actuator B: Chem. 264 (2018) 312–319.
doi: 10.1016/j.snb.2018.03.0155
Q. Chen, S. Li, Y. Liu, Sens. Actuator B: Chem. 305 (2020) 127511.
doi: 10.1016/j.snb.2019.127511
S. Li, Y. Hou, Q. Chen, et al., ACS Appl. Mater. Interfaces 12 (2020) 2581–2590.
doi: 10.1021/acsami.9b20275
P. Li, Q. Chen, T.C. Wang, et al., Chem 4 (2018) 1022–1034.
doi: 10.1016/j.chempr.2018.03.001
Z. Zhao, Y. Huang, W. Liu, F. Ye, S. Zhao, ACS Sustain. Chem. Eng. 8 (2020) 4481–4488.
doi: 10.1021/acssuschemeng.9b07631
W. Xu, L. Jiao, H. Yan, ACS. Appl. Mater. Interfaces 11 (2019) 22096–22101.
doi: 10.1021/acsami.9b03004
X. Zhong, H. Xia, W. Huang, Z. Li, Y. Jiang, Chem. Eng. J. 381 (2020) 122758.
doi: 10.1016/j.cej.2019.122758
I. Nath, J. Chakraborty, F. Verpoort, Chem. Soc. Rev. 45 (2016) 4127–4170.
doi: 10.1039/C6CS00047A
M. Li, H. Zhang, Y. Hou, et al., Nanoscale. Horiz. 5 (2020) 202–217.
doi: 10.1039/C9NH00577C
C. Zhao, Z. Jiang, R. Mu, Y. Li, Talanta 159 (2016) 365–370.
doi: 10.1016/j.talanta.2016.06.043
H. Ranji-Burachaloo, F. Karimi, K. Xie, et al., ACS Appl. Mater. Interfaces 9 (2017) 33599–33608.
doi: 10.1021/acsami.7b07981
H. Cheng, Y. Liu, Y. Hu, et al., Anal. Chem. 89 (2017) 11552–11559.
doi: 10.1021/acs.analchem.7b02895
H. Jin, D. Ye, L. Shen, et al., Analytic. Chem. 94 (2022) 1499–1509.
doi: 10.1021/acs.analchem.1c04496
C. Fu, H. Zhou, L. Tan, ACS. Nano 12 (2018) 2201–2210.
doi: 10.1021/acsnano.7b08868
T. Zhang, Y. Xing, Y.U. Song, Anal. Chem. 91 (2019) 10589–10595.
doi: 10.1021/acs.analchem.9b01715
Z.W. Jiang, F.Q. Dai, C.Z. Huang, Y.F. Li, RSC Adv. 6 (2016) 86443–86446.
doi: 10.1039/C6RA19170C
J. He, Y. Zhang, X. Zhang, Y. Huang, Sci. Rep. 8 (2018) 1–8.
F.F. Chen, Y.J. Zhu, Z.C. Xiong, T.W. Sun, Chem. Eur. J. 23 (2017) 3328–3337.
doi: 10.1002/chem.201604813
M.A. Komkova, E.E. Karyakina, A.A. Karyakin, J. Am. Chem. Soc. 140 (2018) 11302–11307.
doi: 10.1021/jacs.8b05223
F. Cui, Q. Deng, L. Sun, RSC Adv. 5 (2015) 98215–98221.
doi: 10.1039/C5RA18589K
F.K. Shieh, S.C. Wang, C. Yen, J. Am. Chem. Soc. 137 (2015) 4276–4279.
doi: 10.1021/ja513058h
X. Lian, Y. Fang, E. Joseph, Chem. Soc. Rev. 46 (2017) 3386–3401.
doi: 10.1039/C7CS00058H
Z. He, X. Huang, C. Wang, Angew. Chem. Int. Ed. 58 (2019) 8752–8756.
doi: 10.1002/anie.201902612
J. Liu, Q. Chen, W. Zhu, Adv. Funct. Mater. 27 (2017) 1605926.
doi: 10.1002/adfm.201605926
D. Wang, H. Wu, W. Lim, Adv. Mater. 31 (2019) 1901893.
doi: 10.1002/adma.201901893
J. Liu, T. Liu, P. Du, L. Zhang, J. Lei, Angew. Chem. Int. Ed. 58 (2019) 7808–7812.
doi: 10.1002/anie.201903475
S. Cao, K. Zhang, B. Hanna, E. Al-Sayed, Chin. Chem. Lett. 33 (2022) 1757–1762.
doi: 10.1016/j.cclet.2021.08.091
Y. Yang, D. Zhu, Y. Liu, Nanoscale 12 (2020) 13548–13557.
doi: 10.1039/D0NR02800B
G.A. Keller, T.G. Warner, K.S. Steimer, R.A. Hallewell, Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 7381–7385.
doi: 10.1073/pnas.88.16.7381
L. Zhang, Y. Zhang, Z. Wang, Mater. Horiz. 6 (2019) 1682–1687.
doi: 10.1039/C9MH00339H
W. Zhang, S. Hu, J.J. Yin, et al., J. Am. Chem. Soc. 138 (2016) 5860–5865.
doi: 10.1021/jacs.5b12070
S.L. Cao, D.M. Yue, X.H. Li, ACS Sustain. Chem. Eng. 4 (2016) 3586–3595.
doi: 10.1021/acssuschemeng.6b00777
K.P. Bhabak, G. Mugesh, Acc. Chem. Res. 43 (2010) 1408–1419.
doi: 10.1021/ar100059g
N. Singh, M.A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh, Angew. Chem. Int. Ed. 56 (2017) 14267–14271.
doi: 10.1002/anie.201708573
J. Wu, Y. Yu, Y. Cheng, et al., Angew. Chem. Int. Ed. 60 (2021) 1227–1234.
doi: 10.1002/anie.202010714
Z. Zhao, T. Lin, W. Liu, et al., Spectrochim. Acta A 219 (2019) 240–247.
doi: 10.1016/j.saa.2019.04.061
Y. Huang, M. Zhao, S. Han, Adv. Mater. 29 (2017) 1700102.
doi: 10.1002/adma.201700102
H. Yang, R. Yang, P. Zhang, Microchim. Acta 184 (2017) 4629–4635.
doi: 10.1007/s00604-017-2509-4
L. Luo, L. Huang, X. Liu, et al., Inorg. Chem. 58 (2019) 11382–11388.
doi: 10.1021/acs.inorgchem.9b00661
B. Liu, H. Shioyama, T. Akita, Q.J. Xu, Am. Chem. Soc. 130 (2008) 5390–5391.
doi: 10.1021/ja7106146
L. Zhang, Z.J. Xia, Phys. Chem. C 115 (2011) 11170–11176.
doi: 10.1021/jp201991j
M. Bilal, N. Khaliq, M. Ashraf, et al., Colloid Surf. B. Biointerface 221 (2023) 112950.
doi: 10.1016/j.colsurfb.2022.112950
K. Fan, J. Xi, L. Fan, et al., Nat. Commun. 9 (2018) 1440.
doi: 10.1038/s41467-018-03903-8
R. Fasan, ACS Catal. 2 (2012) 647–666.
doi: 10.1021/cs300001x
S. Liu, Z. Li, C. Wang, Nat. Commun. 11 (2020) 938.
doi: 10.1038/s41467-020-14565-w
P. Jiang, S. Chen, C. Wang, Mater. Today Sustain. 9 (2020) 100039.
C. Wang, D. Wang, S. Liu, J. Catal. 389 (2020) 150.
doi: 10.1016/j.jcat.2020.05.034
M. Chan, B.G. Chen, W.T. Huang, et al., Mater. Today Adv. 17 (2023) 100342.
doi: 10.1016/j.mtadv.2023.100342
W. Ma, J. Mao, X. Yang, Chem. Commun. 55 (2019) 159–162.
doi: 10.1039/C8CC08116F
M. Huo, L. Wang, Y. Wang, ACS Nano 13 (2019) 2643–2653.
L. Gao, J. Zhuang, L. Nie, Nat. Nanotechnol. 2 (2007) 577–583.
doi: 10.1038/nnano.2007.260
F. Natalio, R. Andre, A.F. Hartog, Nat. Nanotechnol. 7 (2012) 530–535.
doi: 10.1038/nnano.2012.91
N. Singh, M.A. Savanur, S. Srivastava, Angew. Chem. Int. Ed. 56 (2017) 14267–14271.
doi: 10.1002/anie.201708573
S. Wang, Y. Jin, W. Ai, Nano Res. (2023) 1–10.
H. Chen, X. Zeng, H.P. Tham, et al., Angew. Chem. Int. Ed. 58 (2019) 7641–7646.
doi: 10.1002/anie.201900886
G. Yang, S.Z.F. Phua, W.Q. Lim, et al., Adv. Mater. 31 (2019) 1901513.
doi: 10.1002/adma.201901513
S.Z.F. Phua, C. Xue, W.Q. Lim, et al., Chem. Mater. 31 (2019) 3349–3358.
doi: 10.1021/acs.chemmater.9b00439
H.P. Tham, K. Xu, W.Q. Lim, et al., ACS Nano 12 (2018) 11936–11948.
doi: 10.1021/acsnano.8b03007
S. Dang, Q. Zhu, Q. Xu, Nat. Rev. Mater. 3 (2018) 17075.
A.J. Amali, H. Hoshino, C. Wu, et al., Chem. Eur. J. 20 (2014) 8279–8282.
doi: 10.1002/chem.201402982
X. Deng, R. Zhao, Q. Song, et al., Drug. Deliv. 29 (2022) 3142–3154.
doi: 10.1080/10717544.2022.2127973
S. Yu, K. Xu, Z. Wang, Z. Zhang, Z. Zhang, Front. Bioengin. Biotechnol. 10 (2023) 1–14.
K. Zhang, L. Lu, Z. Liu, et al., Colloid. Surf. A: Physicochem. Eng. Asp. 650 (2022) 129662.
doi: 10.1016/j.colsurfa.2022.129662
M. Huo, L. Wang, Y. Wang, et al., Adv. Mater. 32 (2020) e2003563.
doi: 10.1002/adma.202003563
M. Huo, L. Wang, Y. Chen, et al., Nat. Commun. 8 (2017) 357.
doi: 10.1038/s41467-017-00424-8
W. Zhou, J. Gao, H. Zhao, et al., Environ. Technol. 38 (2017) 1887–1896.
doi: 10.1080/09593330.2016.1240241
A.L. Pham, F.M. Doyle, D.L. Sedlak, Water. Res. 46 (2012) 6454–6462.
doi: 10.1016/j.watres.2012.09.020
S. Fu, S. Wang, X. Zhang, Colloid Surf. B 154 (2017) 239–245.
doi: 10.1016/j.colsurfb.2017.03.038
B. Wang, J.J. Yin, X. Zhou, et al., J. Phys. Chem. C 117 (2012) 383–392.
Z. Chen, J. Yin, Y. Zhou, et al., ACS Nano 6 (2012) 4001–4012.
doi: 10.1021/nn300291r
S. Zhao, H. Duan, Y. Yang, et al., Nano Lett. 19 (2019) 8887–8895.
doi: 10.1021/acs.nanolett.9b03774
Y. Chen, T. Chen, X. Wu, et al., Small 15 (2019) e1903153.
doi: 10.1002/smll.201903153
D. Ni, D. Jiang, C. Kutyref, et al., Nat. Commun. 18 (2018) 5421.
S. Li, D. Jiang, E.B. Ehlerding, et al., ACS Nano 13 (2019) 13382–13389.
doi: 10.1021/acsnano.9b06780
Y. Zhang, D. Li, J. Tan, et al., Small 17 (2021) e2005739.
doi: 10.1002/smll.202005739
C. Ren, D. Li, Q. Zhou, et al., Biomaterials 232 (2020) 119752.
doi: 10.1016/j.biomaterials.2019.119752
Q. Han, X. Wang, X. Liu, et al., J. Colloid Interf. Sci. 539 (2019) 575–584.
doi: 10.1016/j.jcis.2018.12.093
X. Hu, F. Li, F. Xia, et al., J. Am. Chem. Soc. 142 (2019) 1636–1644.
L. Feng, Z. Dong, C. Liang, et al., Biomaterials 181 (2018) 81–91.
doi: 10.1016/j.biomaterials.2018.07.049
W. Zhen, Y. Liu, L. Lin, et al., Angew. Chem. Int. Ed. 57 (2018) 10309–103013.
doi: 10.1002/anie.201804466
P. Xu, X. Wang, T. Li, et al., Nanoscale 12 (2020) 4051–4060.
doi: 10.1039/C9NR08930F
H. Su, D.D. Liu, M. Zhao, et al., ACS Appl. Mater. Interfaces 7 (2015) 8233–8242.
doi: 10.1021/acsami.5b01271
D.Y. Zhang, M.R. Younis, H. Liu, et al., Biomaterials 271 (2021) 120706.
doi: 10.1016/j.biomaterials.2021.120706
X. Ren, D. Chen, T. Wang, et al., J. Nanobiotechnol. 20 (2022) 92.
doi: 10.1186/s12951-022-01295-y
G. Merga, N. Saucedo, L.C. Cass, et al., J. Phys. Chem. C 114 (2010) 14811–14818.
doi: 10.1021/jp104922a
S. Wang, W. Chen, A.L. Liu, et al., Chem. Phys. Chem. 13 (2012) 1199–1204.
doi: 10.1002/cphc.201100906
Y. Lin, Z. Li, Z. Chen, J. Ren, X. Qu, Biomaterials 34 (2013) 2600–2610.
doi: 10.1016/j.biomaterials.2013.01.007
R.V. Jagadeesh, K. Murugesan, A.S. Alshammari, Science 358 (2017) 326–332.
doi: 10.1126/science.aan6245
S. Li, L. Wang, X. Zhang, et al., Sens. Actuator B 264 (2018) 312–319.
doi: 10.1016/j.snb.2018.03.015
Y. Song, D. Cho, S. Venkateswarlu, M. Yoon, RSC Adv. 7 (2017) 10592–10600.
doi: 10.1039/C7RA00115K
O. Karagiaridi, W. Bury, J.E. Mondloch, J.T. Hupp, O.K. Farha, Angew. Chem. Int. Ed. 53 (2014) 4530–4540.
doi: 10.1002/anie.201306923
M.J. Katz, S.Y. Moon, J.E. Mondloch, Chem. Sci. 6 (2015) 2286–2291.
doi: 10.1039/C4SC03613A
O. Karagiaridi, J. Lalonde, Am. Chem. Soc. 134 (2012) 18790–18796.
doi: 10.1021/ja308786r
Y. Sang, L. Cao, J. Am. Chem. Soc. 142 (2020) 5177–5183.
doi: 10.1021/jacs.9b12873
K. Wang, D. Feng, T. Liu, Am. Chem. Soc. 136 (2014) 13983–13986.
doi: 10.1021/ja507269n
J.D. Evans, C.J. Sumby, C.J. Doonan, et al., Chem. Soc. Rev. 43 (2014) 5933–5951.
doi: 10.1039/C4CS00076E
W.H. Chen, M. Vazquez-Gonzalez, A. Kozell, A. Cecconello, I. Willner, Small 14 (2018) 1703149.
doi: 10.1002/smll.201703149
A.H. Valekar, B.S. Batule, M.I. Kim, et al., Biosens. Bioelectron. 100 (2018) 161–168.
doi: 10.1016/j.bios.2017.08.056
L. He, Y. Li, Q. Wu, et al., ACS Appl. Mater. Interfaces 11 (2019) 29158–29166.
doi: 10.1021/acsami.9b09283
D. Yang, H. Yu, T. He, et al., Nat. Commun. 10 (2019) 3844.
doi: 10.1038/s41467-019-11817-2
D. Wang, H. Wu, S.Z.F. Phua, et al., Nat. Commun. 11 (2020) 357.
doi: 10.1038/s41467-019-14199-7
Z. Zhao, J. Pang, W. Liu, et al., Microchim. Acta 186 (2019) 295.
doi: 10.1007/s00604-019-3416-7
Q. Wang, X. Zhang, L. Huang, Angew. Chem. Int. Ed. 56 (2017) 16082–16085.
doi: 10.1002/anie.201710418
X.Q. Tang, Y.D. Zhang, Z.W. Jiang, Talanta 179 (2018) 43–50.
doi: 10.1016/j.talanta.2017.10.049
Q. Zhang, F. Zhang, L. Yu, et al., Microchim. Acta 187 (2020) 1–8.
doi: 10.1007/s00604-019-3921-8
J. Zhang, J. Liu, Luminescence 35 (2020) 1185–1194.
doi: 10.1002/bio.3893
T. Lin, Y. Qin, Y. Huang, et al., Chem. Commun. 54 (2018) 1762–1765.
doi: 10.1039/C7CC09819G
M. Pamei, A.G. Achumi, R. Kahmei, et al., Microporous Mesoporous Mater. 340 (2022) 112031.
doi: 10.1016/j.micromeso.2022.112031
A. Badoei-dalfard, N. Sohrabi, Z. Karami, G. Sargazi, Biosens. Bioelectron. 141 (2019) 111420.
doi: 10.1016/j.bios.2019.111420
J. Wang, Y. Hu, Q. Zhou, et al., ACS Appl. Mater. Interfaces 11 (2019) 44466–44473.
doi: 10.1021/acsami.9b17488
L. Liang, Y. Huang, W. Liu, W. Zuo, F. Ye, Front. Chem. 8 (2020) 1–9.
doi: 10.3389/fchem.2020.00001
J.W. Zhang, H.T. Zhang, Z.Y. Du, et al., Chem. Commun. 50 (2014) 1092–1094.
doi: 10.1039/C3CC48398C
H. Tan, Q. Li, Z. Zhou, Anal. Chim. Acta 856 (2015) 90–95.
doi: 10.1016/j.aca.2014.11.026
Y. Zhang, J. Song, W. Shao, J. Microporous Mesoporous Mater. 310 (2021) 110642.
doi: 10.1016/j.micromeso.2020.110642
H.J. Cheon, Q.H. Nguyen, M.I. Kim, Nanomaterials 11 (2021) 1207.
doi: 10.3390/nano11051207
J. Guo, S. Wu, Y. Wang, M. Zhao, Sens. Actuator. B: Chem. 312 (2020) 128021.
doi: 10.1016/j.snb.2020.128021
J. Hassanzadeh, A. Khataee, H. Eskandari, Sens. Actuator. B: Chem. 259 (2018) 402–410.
doi: 10.1016/j.snb.2017.12.068
S. Wang, W. Deng, L. Yang, et al., ACS Appl. Mater. Interfaces 9 (2017) 24440–24445.
doi: 10.1021/acsami.7b07307
N. Cheng, C. Zhu, Y. Wang, et al., J. Anal. Testing 3 (2019) 99–106.
doi: 10.1007/s41664-018-0079-z
H. Li, H. Liu, J. Zhang, et al., ACS Appl. Mater. Interfaces 9 (2017) 40716–40725.
doi: 10.1021/acsami.7b13695
C. Wang, G. Tang, H. Tan, Microchim. Acta 185 (2018) 1–8.
doi: 10.1007/s00604-017-2562-z
C. Li, J. Hai, L. Fan, et al., Sens. Actuator. B: Chem. 284 (2019) 213–219.
doi: 10.1016/j.snb.2018.12.137
Q. Liu, A. Zhang, R. Wang, et al., Nano-Micro Lett. 13 (2021) 1–53.
doi: 10.1007/s40820-020-00525-y
L. Wang, Z. Hu, S. Wu, et al., Anal. Chim. Acta 1121 (2020) 26–34.
doi: 10.1016/j.aca.2020.04.073
X. Ruan, D. Liu, X. Niu, et al., Anal. Chem. 91 (2019) 13847–13854.
doi: 10.1021/acs.analchem.9b03321
Y. Wang, Y. Zhu, A. Binyam, et al., Biosens. Bioelectron. 86 (2016) 432–438.
doi: 10.1016/j.bios.2016.06.036
S. Li, X. Hu, Q. Chen, et al., Biosens. Bioelectron. 137 (2019) 133–139.
doi: 10.1016/j.bios.2019.05.010
X. Wang, X. Jiang, H. Wei, J. Mater. Chem. B 8 (2020) 6905–6911.
doi: 10.1039/C9TB02542A
C. Wang, J. Gao, Y. Cao, H. Tan, Anal. Chim. Acta 1004 (2018) 74–81.
doi: 10.1016/j.aca.2017.11.078
C. Song, W. Ding, H. Liu, et al., New J. Chem. 43 (2019) 12776–12784.
doi: 10.1039/C9NJ03006A
X. Li, X. Li, D. Li, et al., Biosens. Bioelectron. 168 (2020) 112554.
doi: 10.1016/j.bios.2020.112554
D. Sun, Z. Luo, J. Lu, et al., Biosens. Bioelectron. 134 (2019) 49–56.
doi: 10.1016/j.bios.2019.03.049
P. Ling, C. Qian, J. Yu, F. Gao, Biosens. Bioelectron. 149 (2020) 111838.
doi: 10.1016/j.bios.2019.111838
S.R. Hormozi Jangi, M. Akhond, Microchem. J. 158 (2020) 105328.
doi: 10.1016/j.microc.2020.105328
Y. Wu, Y. Ma, G. Xu, et al., Sens. Actuator B: Chem. 249 (2017) 195–202.
doi: 10.1016/j.snb.2017.03.145
T.K. Pal, Mater. Chem. Front. 7 (2023) 405–441.
doi: 10.1039/D2QM01070D
H. Tan, C. Ma, L. Gao, et al., Chem. Eur. J. 20 (2014) 16377–16383.
doi: 10.1002/chem.201404960
L. Hou, Y. Qin, T. Lin, et al., Sens. Actuator B: Chem. 321 (2020) 128547.
doi: 10.1016/j.snb.2020.128547
T. Wen, G. Quan, B. Niu, et al., Small 17 (2021) 2005064.
doi: 10.1002/smll.202005064
L. Ma, F. Jiang, X. Fan, et al., Adv. Mater. 32 (2020) 2003065.
doi: 10.1002/adma.202003065
D.Q. Chen, D.Z. Yang, C.A. Dougherty, et al., ACS Nano 11 (2017) 4315–4327.
doi: 10.1021/acsnano.7b01530
M. Cai, G. Chen, L. Qin, et al., Pharmaceutics 12 (2020) 232.
doi: 10.3390/pharmaceutics12030232
R. Masoudifar, N. Pouyanfar, D. Liu, et al., Appl. Mat. Today 29 (2022) 101646.
doi: 10.1016/j.apmt.2022.101646
B. Maranescu, A. Visa, Int. J. Mol. Sci. 18 (2022) 4458.
J. Park, Q. Jiang, D.W. Feng, L.Q. Mao, H.C. Zhou, J. Am. Chem. Soc. 138 (2016) 3518–3525.
doi: 10.1021/jacs.6b00007
D. Duan, H. Liu, M. Xu, ACS Appl. Mater. Interfaces 10 (2018) 42165–42174.
doi: 10.1021/acsami.8b17660
Y.A. Li, X.D. Zhao, H.P. Yin, et al., Chem. Commun. 52 (2016) 14113–14116.
doi: 10.1039/C6CC07321B
M.F. Attia, J. Pharm. Pharmacol. 71 (2019) 1185–1198.
doi: 10.1111/jphp.13098
F.S. Anarjan, Nano. Struct. Nano Objects 19 (2019) 100370.
doi: 10.1016/j.nanoso.2019.100370
M.J. Akhtar, Clin. Chim. Acta 436 (2014) 78–92.
doi: 10.1016/j.cca.2014.05.004
J. Yoo, Cancers (Basel) 11 (2019) 640.
C. Fang, Z. Deng, G. Cao, et al., Adv. Funct. Mater. 30 (2020) 1910085.
doi: 10.1002/adfm.201910085
Z. Tian, K. Yang, T. Yao, et al., Small 15 (2019) 1903746.
doi: 10.1002/smll.201903746
J. Li, K. Yi, Y. Lei, et al., Chem. Commun. 56 (2020) 6285–6288.
doi: 10.1039/D0CC01331E
H.B. Ji, C.R. Kim, C.H. Min, et al., Bioengin. Transl. Med. 8 (2023) e10477.
doi: 10.1002/btm2.10477
C. Zhang, L. Zhang, W. Wu, Adv. Mater. 31 (2019) 1901179.
doi: 10.1002/adma.201901179
K. Mahmoudi, K.L. Garvey, A. Bouras, J. Neurooncol. 141 (2019) 595–607.
doi: 10.1007/s11060-019-03103-4
S. Ayan, G. Gunaydin, N. Yesilgul-Mehmetcik, Chem. Commun. 56 (2020) 14793–14796.
doi: 10.1039/D0CC06031C
S. Kwiatkowski, B. Knap, D. Przystupski, et al., Biomed. Pharmacother. 106 (2018) 1098–1107.
doi: 10.1016/j.biopha.2018.07.049
E. Ö. Gündüz, M.E. Gedik, G. Günaydın, E. Okutan, Chem. Med. Chem. 17 (2022) e202100693.
doi: 10.1002/cmdc.202100693
P. Sarbadhikary, B.P. George, H. Abrahamse, Theranostics 11 (2021) 9054–9088.
doi: 10.7150/thno.62479
C. Lennicke, H.M. Cochemé, Mol. Cells 81 (2021) 3691–3707.
doi: 10.1016/j.molcel.2021.08.018
E. Piskounova, M. Agathocleous, M.M. Murphy, et al., Nature 527 (2015) 186–191.
doi: 10.1038/nature15726
C. Prinz, E. Vasyutina, G. Lohmann, et al., Mol. Cancer 14 (2015) 114.
doi: 10.1186/s12943-015-0378-1
G. Plotino, N.M. Grande, M. Mercade, Int. Endod. J. 52 (2019) 760–774.
doi: 10.1111/iej.13057
C. Donohoe, M.O. Senge, L.G. Arnaut, L.C. Gomes-Da-Silva, Biochim. Biophys. Acta Rev. Cancer 1872 (2019) 188308.
doi: 10.1016/j.bbcan.2019.07.003
X. Zhang, F. Peng, D. Wang, J. Function. Biomat. 13 (2022) 215.
doi: 10.3390/jfb13040215
A. Sahu, I. Kwon, G. Tae, Biomaterials 228 (2020) 119578.
doi: 10.1016/j.biomaterials.2019.119578
Y. Zhang, F. Wang, C. Liu, et al., ACS Nano 12 (2018) 651–661.
doi: 10.1021/acsnano.7b07746
J.Y. Zeng, M.Z. Zou, M. Zhang, et al., ACS Nano 12 (2018) 4630–4640.
doi: 10.1021/acsnano.8b01186
G. Lan, K. Ni, S.S. Veroneau, J. Am. Chem. Soc. 141 (2019) 4204–4208.
doi: 10.1021/jacs.8b13804
D. Wang, H. Wu, S.Z.F. Phua, et al., Nat. Commun. 11 (2020) 1–13.
doi: 10.1038/s41467-019-13993-7
K. Zhang, X. Meng, Y. Cao, et al., Adv. Funct. Mater. 28 (2018) 1–10.
X. Liu, Y. Pan, J. Yang, et al., Nano Res. 13 (2020) 653–660.
doi: 10.1007/s12274-020-2668-1
Q. You, K. Zhang, J. Liu, Adv. Sci. 7 (2020) 1903341.
doi: 10.1002/advs.201903341
H. Cheng, J.Y. Zhu, S.Y. Li, et al., Adv. Funct. Mater. 26 (2016) 7847–7860.
doi: 10.1002/adfm.201603212
W. Zhang, J. Lu, X. Gao, Angew. Chem. Int. Ed. 57 (2018) 4891–4896.
doi: 10.1002/anie.201710800
S. Yin, G. Song, Y. Yang, et al., Adv. Funct. Mater. 29 (2019) 1901417.
doi: 10.1002/adfm.201901417
H. Min, J. Wang, Y. Qi, et al., Adv. Mater. 31 (2019) 1808200.
doi: 10.1002/adma.201808200
S. Wang, L. Shang, L. Li, et al., Adv. Mater. 28 (2016) 8379–8387.
doi: 10.1002/adma.201602197
J. Beik, Z. Abed, F.S. Ghoreishi, et al., J. Control. Rel. 235 (2016) 205–221.
doi: 10.1016/j.jconrel.2016.05.062
R. Bardhan, S. Lal, A. Joshi, N.J. Halas, Acc. Chem. Res. 44 (2011) 936–946.
doi: 10.1021/ar200023x
T. Zhao, S. Qin, L. Peng, et al., Carbohydr. Polym. 214 (2019) 221–233.
doi: 10.1016/j.carbpol.2019.03.043
W. Sheng, S. He, W.J. Seare, A. Almutairi, J. Biomed. Opt. 22 (2017) 80901.
doi: 10.1117/1.JBO.22.8.080901
A.M. Alkilany, L.B. Thompson, S.P. Boulos, et al., Adv. Drug. Deliv. Rev. 64 (2012) 190–199.
doi: 10.1016/j.addr.2011.03.005
J. Li, X. Yu, Y. Jiang, et al., Adv. Mater. 33 (2021) e2003458.
doi: 10.1002/adma.202003458
S. Kunjachan, A. Detappe, R. Kumar, et al., Nano Lett. 15 (2015) 7488–7496.
doi: 10.1021/acs.nanolett.5b03073
H.K. Angell, D. Bruni, J.C. Barrett, et al., Clin. Cancer Res. 26 (2020) 332–339.
doi: 10.1158/1078-0432.CCR-18-1851
D. Xu, J. Liu, Y. Wang, et al., ACS Biomater. Sci. Eng. 6 (2020) 4940–4948.
doi: 10.1021/acsbiomaterials.0c00984
C. Kong, X. Chen, Int. J. Nanomed. 17 (2022) 6427–6446.
doi: 10.2147/IJN.S388996
B.C. Wilson, R.A. Weersink, Photochem. Photobiol. 96 (2020) 219–231.
doi: 10.1111/php.13184
C. Liu, L. Luo, L. Zeng, et al., Small 14 (2018) 1801851.
doi: 10.1002/smll.201801851
X. Zeng, S. Yan, P. Chen, et al., Nano Res. 13 (2020) 1527–1535.
doi: 10.1007/s12274-020-2746-4
Y. Zhao, C. Shi, J. Cao, Drug Deliv. 28 (2021) 2085–2099.
doi: 10.1080/10717544.2021.1983082
S. Chen, Y. Yin, J. Appl. Mech. 81 (2014) 121002–121014.
doi: 10.1115/1.4028780
M. Elsabahy, G.S. Heo, S.M. Lim, G. Sun, K.L. Wooley, Chem. Rev. 115 (2015) 10967–11011.
doi: 10.1021/acs.chemrev.5b00135
Y. Li, J. Jin, D. Wang, et al., Nano Res. 11 (2018) 3294–3305.
doi: 10.1007/s12274-017-1874-y
Y. Liu, Z. Tang, Chem. Eur. J. 18 (2012) 1030–1037.
doi: 10.1002/chem.201101520
C.Y. Sun, C. Qin, X.L. Wang, Dalton Trans. 41 (2012) 6906–6909.
doi: 10.1039/c2dt30357d
C. Koschnick, R. Stäglich, T. Scholz, et al., Nat. Commun. 12 (2021) 3099–3109.
doi: 10.1038/s41467-021-23348-w
D. Chen, D. Yang, C.A. Dougherty, et al., ACS Nano 11 (2017) 4315–4327.
doi: 10.1021/acsnano.7b01530
M. Liu, G. Zeng, K. Wang, et al., Nanoscale 8 (2016) 16819–16840.
doi: 10.1039/C5NR09078D
J. Liu, Y. Yang, W. Zhu, et al., Biomaterials 97 (2016) 1–9.
doi: 10.1016/j.biomaterials.2016.04.034
Y. Liu, K. Ai, L. Lu, Chem. Rev. 114 (2014) 5057–5115.
doi: 10.1021/cr400407a
J.A. Ibacache, J.A. Valderrama, V.J. Arancibia, Chil. Chem. Soc. 61 (2016) 3191–3194.
doi: 10.4067/S0717-97072016000400008
K. Yang, L. Hu, X. Ma, Adv. Mater. 24 (2012) 1868–1872.
doi: 10.1002/adma.201104964
Y.A. Cheon, J.H. Bae, B.G. Chung, Langmuir 32 (2016) 2731–2736.
doi: 10.1021/acs.langmuir.6b00315
S. Lee, Y. Cho, H.K. Song, et al., Angew. Chem. Int. Ed. 124 (2012) 8878–8882.
doi: 10.1002/ange.201203581
P. Ercius, O. Alaidi, M.J. Rames, G. Ren, J. Matthew, Adv. Mater. 27 (2015) 5638–5663.
doi: 10.1002/adma.201501015
S. Li, L. Zhang, X. Liang, et al., Chem. Eng. J. 378 (2019) 122175–122181.
doi: 10.1016/j.cej.2019.122175
S.K. Lee, Y. Zu, A. Herrmann, et al., J. Am. Chem. Soc. 121 (1999) 3513–3520.
doi: 10.1021/ja984188m
Y. Che, A. Datar, X. Yang, et al., J. Am. Chem. Soc. 129 (2007) 6354–6355.
doi: 10.1021/ja070164g
Y. Kai, H. Xu, C. Liang, et al., Adv. Mater. 24 (2012) 5586–5592.
doi: 10.1002/adma.201202625
I. Ghosh, T. Ghosh, J.I. Bardagi, Science 346 (2014) 725–728.
doi: 10.1126/science.1258232
J. Park, D. Yuan, K.T. Pham, J. Am. Chem. Soc. 134 (2012) 99–102.
doi: 10.1021/ja209197f
L.L. Tan, H. Li, Y. Tao, Adv. Mater. 26 (2014) 7027–7031.
doi: 10.1002/adma.201401672
X. Meng, B. Gui, D. Yuan, et al., Sci. Adv. 2 (2016) e1600480–e1600486.
doi: 10.1126/sciadv.1600480
Y. Liu, J.F. Eubank, A.J. Cairns, et al., Angew. Chem. Int. Ed. 46 (2006) 3278–3283.
A.J. Cairns, J. Eckert, L. Wojtas, et al., Chem. Mater. 28 (2016) 7353–7361.
doi: 10.1021/acs.chemmater.6b02817
B. Seoane, S. Castellanos, A. Dikhtiarenko, Coord. Chem. Rev. 307 (2016) 147–187.
doi: 10.1016/j.ccr.2015.06.008
C. Xuechao, D. Xiaoran, Chem. Eng. J. 358 (2019) 369–378.
doi: 10.1016/j.cej.2018.10.044
Z. Qin, D. Li, Y. Ou, et al., Crystal 13 (2023) 1–9.
J. Feng, Z. Xu, P. Dong, et al., J. Mater. Chem. B 7 (2019) 994–1004.
doi: 10.1039/C8TB02815J
X. Yin, F. Ai, L. Han, Front. Chem. 10 (2022) 841316.
doi: 10.3389/fchem.2022.841316
L. Zhang, Z. Wang, Y. Zhang, et al., ACS Nano 12 (2018) 10201–10211.
doi: 10.1021/acsnano.8b05200
S.Y. Li, H. Cheng, B.R. Xie, et al., ACS Nano 11 (2017) 7006–7018.
doi: 10.1021/acsnano.7b02533
C. Liu, J. Xing, O.U. Akakuru, et al., Nano Lett. 19 (2019) 5674–5682.
doi: 10.1021/acs.nanolett.9b02253
L. Dai, M. Yao, Z. Fu, Nat. Commun. 13 (2022) 2688.
doi: 10.1038/s41467-022-30436-y
M. Wen, J. Ouyang, C. Wei, Angew. Chem. Int. Ed. 58 (2019) 17425–17432.
doi: 10.1002/anie.201909729
Q. Chen, M. Chen, Z. Liu, et al., Chem. Soc. Rev. 48 (2019) 5506–5526.
doi: 10.1039/C9CS00271E
G. Lan, K. Ni, Z. Xu, et al., J. Am. Chem. Soc. 140 (2018) 5670–5673.
doi: 10.1021/jacs.8b01072
K. Ni, G. Lan, C. Chan, et al., Nat. Commun. 9 (2018) 1–12.
doi: 10.1038/s41467-017-02088-w
K. Ni, T. Aung, S. Li, et al., Chem 5 (2019) 1892–1913.
doi: 10.1016/j.chempr.2019.05.013
X. Ma, X. Ren, X. Guo, et al., Biomaterials 214 (2019) 119223.
doi: 10.1016/j.biomaterials.2019.119223
Z. Deng, C. Fang, X. Ma, et al., ACS Appl. Mater. Interfaces 12 (2020) 20321–20330.
doi: 10.1021/acsami.0c06648
L. Wang, C. Hou, H. Yu, et al., Chem. Electron. Chem. 7 (2020) 4446–4452.
X. Chang, X. Li, X. Qiao, et al., Sens. Actuator. B: Chem. 304 (2020) 127430.
doi: 10.1016/j.snb.2019.127430
X.F. Wang, W. Ma, F. Jiang, Chem. Eng. J. 338 (2018) 504–512.
doi: 10.1016/j.cej.2018.01.072
E.X. Chen, H. Yang, J. Zhang, Inorg. Chem. 53 (2014) 5411–5413.
doi: 10.1021/ic500474j
M. Gutiérrez, A.F. Möslein, J.C. Tan, ACS Appl. Mater. Interfaces 13 (2021) 7801–7811.
doi: 10.1021/acsami.0c22307
L. Zhang, N. Wang, P. Cao, Microchem. J. 159 (2020) 105343.
doi: 10.1016/j.microc.2020.105343
X. Wei, J. Guo, H. Lian, Sens. Actuator. B: Chem. 329 (2020) 129205.
Y. Chen, P. Li, J.A. Modica, J. Am. Chem. Soc. 140 (2018) 5678–5681.
doi: 10.1021/jacs.8b02089
Y. Zhou, L. Liu, Y. Cao, et al., ACS Appl. Mater. Interfaces 12 (2020) 22581–22592.
doi: 10.1021/acsami.0c04303
C. Zhang, S. Hong, M.D. Liu, et al., J. Control. Rel. 320 (2020) 159–167.
doi: 10.1016/j.jconrel.2020.01.038
J. Xiao, S. Chen, J. Yi, et al., Adv. Funct. Mater. 27 (2017) 1604872.
doi: 10.1002/adfm.201604872
J. Xiao, Y. Zhu, S. Huddleston, et al., ACS Nano 12 (2018) 1023–1032.
doi: 10.1021/acsnano.7b01850
P. Zhang, Y. Li, Y. Tang, et al., ACS. Appl. Mater. Interfaces 12 (2020) 18319–18331.
doi: 10.1021/acsami.0c01792
J. Li, F. Lv, J. Li, et al., Nano Res. 13 (2020) 2268–2279.
doi: 10.1007/s12274-020-2846-1
S. Cai, W. Zhang, R. Yang, Nano Res. 15 (2023) 1–21.
A.A. Farooqui, Neurochemical aspects of neurological disorders, Trace Amines and Neurological Disorders: Potential Mechanisms and Risk Factors, Elsevier Inc., Amsterdam, 2016, pp. 237–256.
H.L. Chen, R.T. Li, K.Y. Wu, et al., Talanta 201 (2020) 120596.
J. Zhu, Y. Tang, Y. Yang, et al., Microporous Mesoporous Mater. 288 (2019) 109610.
doi: 10.1016/j.micromeso.2019.109610
D. Brambilla, B.L. Droumaguet, J. Nicolas, Nanomed. Nanotechnol. Biol. Med. 7 (2011) 521–540.
doi: 10.1016/j.nano.2011.03.008
Z. Liao, J. Zhang, E. Yu, Y. Cui, Polyhedron 151 (2018) 554–567.
doi: 10.1016/j.poly.2018.06.013
J. Zhao, F. Yin, L. Ji, et al., ACS Appl. Mater. Interfaces 12 (2020) 44447–44458.
doi: 10.1021/acsami.0c11064
J. Wang, Y. Fan, Y. Tan, et al., ACS Appl. Mater. Interfaces 10 (2018) 36615–36621.
doi: 10.1021/acsami.8b15452
A.E. Eldeeb, S. Salah, M.J. Ghorab, Drug. Deliv. Sci. Technol. 52 (2019) 236–247.
doi: 10.1016/j.jddst.2019.04.036
J. He, C. Li, J. Ye, Y. Qiao, L. Gu, Biomed. Sign. Process. Cont. 67 (2021) 102491.
doi: 10.1016/j.bspc.2021.102491
W. Wang, A. Ge, H. Zhu, P. Yang, Inorg. Chim. Acta 506 (2020) 119526.
doi: 10.1016/j.ica.2020.119526
X. Zhang, L. Fang, K. Jiang, et al., Biosens. Bioelectron. 130 (2019) 65–72.
doi: 10.1016/j.bios.2019.01.011
Z. Zhu, V. Natarajan, W.N.J. Wang, Solid. Stat. Chem. 288 (2020) 121434.
doi: 10.1016/j.jssc.2020.121434
H. Li, J. Zhu, C. Wang, et al., Int. J. Pharm. 587 (2020) 119649.
doi: 10.1016/j.ijpharm.2020.119649
W. Strzempek, E. Menaszek, B. Gil, Microporous Mesoporous Mater. 280 (2019) 264–270.
doi: 10.1016/j.micromeso.2019.02.018
F. Figueira, J.S. Barbosa, R.F. Mendes, S.S. Braga, F.A.A. Paz, Mater. Today 43 (2021) 84–98.
doi: 10.1016/j.mattod.2020.10.024
Y. Wang, Y. Hu, Q. He, et al., Biosens. Bioelectron. 169 (2020) 112604.
doi: 10.1016/j.bios.2020.112604
G.H. Qiu, Z.H. Weng, P.P. Hu, et al., Talanta 180 (2018) 396–402.
doi: 10.1016/j.talanta.2017.12.045
L. Qin, L.X. Lin, Z.P. Fang, et al., Chem. Commun. 52 (2016) 132–135.
doi: 10.1039/C5CC06697Be=11
Y.W. Zhang, W.S. Liu, J.S. Chen, et al., Sens. Actuator. B: Chem. 321 (2020) 128456.
doi: 10.1016/j.snb.2020.128456
B.P. Xie, G.H. Qiu, P.P. Hu, et al., Sens. Actuator. B: Chem. 254 (2018) 1133–1140.
doi: 10.1016/j.snb.2017.06.085
L. Wang, K. Liang, W. Feng, et al., Microchem. J. 164 (2021) 106047.
doi: 10.1016/j.microc.2021.106047
J. Yang, W. Feng, K. Liang, et al., Talanta 212 (2020) 120744.
doi: 10.1016/j.talanta.2020.120744
M.T. Marcos-Almaraz, R. Gref, V. Agostoni, et al., J. Mater. Chem B 5 (2017) 8563–8569.
doi: 10.1039/C7TB01933E
W. Hu, M.R. Younis, Y. Zhou, C. Wang, X. Xia, Small 16 (2020) 2000553.
doi: 10.1002/smll.202000553
D. Mao, F. Hu, S. Kenry, et al., Adv. Mater. 30 (2018) 1706831.
doi: 10.1002/adma.201706831
J.H. Jo, H.C. Kim, S. Huh, et al., Dalton. Trans. 48 (2019) 8084–8093.
doi: 10.1039/C9DT00791A
G. Wang, W. Jin, A.M. Qasim, Biomaterials 124 (2017) 25–34.
doi: 10.1016/j.biomaterials.2017.01.028
Y. Zhang, P. Sun, L. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1808594.
doi: 10.1002/adfm.201808594
W. Zhang, X. Ren, S. Shi, et al., Nanoscale 12 (2020) 16330–16338.
doi: 10.1039/D0NR01471K
W. Zhuang, D. Yuan, J.R. Li, et al., Adv. Healthc. Mater. 1 (2012) 225–238.
doi: 10.1002/adhm.201100043
X. Liu, Z. Yan, Y. Zhang, ACS Nano 13 (2019) 5222–5230.
doi: 10.1021/acsnano.8b09501
A.L. Sharabati, M. Sabouni, R. Husseini, Nanomaterials 12 (2022) 277.
doi: 10.3390/nano12020277
H. Xia, N. Li, X. Zhong, Y. Jiang, Front. Bioeng. Biotechnol. 8 (2020) 695.
doi: 10.3389/fbioe.2020.00695
J. Yao, Y. Cheng, M. Zhou, et al., Chem. Sci. 9 (2018) 2927–2933.
doi: 10.1039/C7SC05476A
C. Hao, A. Qu, L. Xu, et al., J. Am. Chem. Soc. 141 (2019) 1091–1099.
doi: 10.1021/jacs.8b11856
M. Lu, C. Wang, Y. Ding, et al., Chem. Commun. 55 (2019) 14534–14537.
doi: 10.1039/C9CC07408B
K.M. Holmstrom, T. Finkel, Nat. Rev. Mol. Cell Biol. 15 (2014) 411–421.
doi: 10.1038/nrm3801
R. Yan, S. Sun, J. Yang, et al., ACS Nano 13 (2019) 11552–11560.
doi: 10.1021/acsnano.9b05075
H. Liu, Y. Li, S. Sun, et al., Nat. Commun. 12 (2021) 114.
doi: 10.1038/s41467-020-20275-0
D.D. Wang, Y. Zhao, Chemistry 7 (2021) 2635–2671.
doi: 10.1016/j.chempr.2021.08.020
X. Wang, Y. Hu, H. Wei, Inorg. Chem. Front. 3 (2016) 41–60.
doi: 10.1039/C5QI00240K
J. Zhao, X. Cai, W. Gao, ACS Appl. Mater. Interfaces 10 (2018) 26108–26117.
doi: 10.1021/acsami.8b10345
Y. Liu, Y. Cheng, H. Zhang, et al., Sci. Adv. 6 (2020) 1–10.
H. Li, X. Cao, X. Fei, S. Zhang, Y. Xian, J. Mater. Chem. B 7 (2019) 3027–3033.
doi: 10.1039/C9TB00361D
J. Zhuang, H. Gong, J. Zhou, Sci. Adv. 6 (2020) 1–10.
Q. Chen, M. Xu, W. Zheng, ACS Appl. Mater. Inter. 9 (2017) 6712–6724.
doi: 10.1021/acsami.6b12792
X. Yang, Q. Tang, Y. Jiang, et al., J. Am. Chem. Soc. 141 (2019) 3782–3786.
doi: 10.1021/jacs.8b11996
M.Z. Alyami, S.K. Alsaiari, Y. Li, et al., J. Am. Chem. Soc. 142 (2020) 1715–1720.
doi: 10.1021/jacs.9b11638
K.X. Li, G.W. Guan, L.M. Pei, Q.Y. Yang, Mater. Chem. Front. 7 (2023) 2896–2905.
doi: 10.1039/D2QM01371A
W. Li, R. Wang, Z. Chen, J. Chromatogr. A 1607 (2019) 460403.
doi: 10.1016/j.chroma.2019.460403
H. Zhang, Z. Li, W. Shi, Prog. Chem. 35 (2023) 475.
X. Liu, Y. Xie, M. Hao, Adv. Sci. 9 (2022) 2201735.
doi: 10.1002/advs.202201735
S. Wang, Y. Li, Q. Liu, et al., J Photochem. Photobiol. A: Chem. 437 (2023) 114435.
doi: 10.1016/j.jphotochem.2022.114435
F. Xing, H. Ma, P. Yu, et al., Mater. Design. (2023) 112252.
D. Wang, Y. Zhao, Chem. 7 (2021) 2635–2671.
doi: 10.1016/j.chempr.2021.08.020
C. Keum, C.M. Hirschbiegel, S. Chakraborty, et al., Nano Convergen. 10 (2023) 1–41.
doi: 10.1186/s40580-022-00351-5
J. Sun, X. Zhang, D. Zhang, et al., CCS Chem. 4 (2022) 996–1006.
doi: 10.31635/ccschem.021.202000634
B.T. Liu, X.H. Pan, D.Y. Nie, et al., Adv. Mat. 32 (2020) 2005912.
doi: 10.1002/adma.202005912
B.T. Liu, X.H. Pan, D.Y. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 25701–25707.
doi: 10.1002/anie.202110028
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Xiaoshuai Wu , Bailei Wang , Yichen Li , Xiaoxuan Guan , Mingjing Yin , Wenquan Lv , Yin Chen , Fei Lu , Tao Qin , Huyang Gao , Weiqian Jin , Yifu Huang , Cuiping Li , Ming Gao , Junyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Jia-Qi Feng , Xiang Tian , Rui-Ge Cao , Yong-Xiu Li , Wen-Long Liu , Rong Huang , Si-Yong Qin , Ai-Qing Zhang , Yin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Ruixin Liu , Feng Shi , Yanping Xia , Haibing Zhu , Jiawen Cao , Kai Peng , Chuanli Ren , Juan Li , Zhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664
Lihang Wang , Mary Li Javier , Chunshan Luo , Tingsheng Lu , Shudan Yao , Bing Qiu , Yun Wang , Yunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386