Citation: Shicheng Dong, Jun Zhu. Could π-aromaticity cross an unsaturated system to a fully saturated one?[J]. Chinese Chemical Letters, ;2024, 35(6): 109214. doi: 10.1016/j.cclet.2023.109214 shu

Could π-aromaticity cross an unsaturated system to a fully saturated one?

    * Corresponding author.
    E-mail address: jun.zhu@cuhk.edu.cn (J. Zhu)
  • Received Date: 9 September 2023
    Revised Date: 12 October 2023
    Accepted Date: 15 October 2023
    Available Online: 17 October 2023

Figures(5)

  • The classification of π-/σ-aromaticity depends on the electrons with the dominating contributions. Traditionally, π- and σ-aromaticity are used to describe the unsaturated and saturated systems, respectively. Thus, it is rarely reported that π-aromaticity is dominated in a saturated system. Here we demonstrate that π-aromaticity could be dominating in several fully saturated four-membered rings (4MRs), supported by various aromaticity indices including ΔBL, NICS, EDDB, MCI, and AdNDP. The origin of such π-aromaticity in saturated rings could be attributed to an introduction of two additional electrons into the π-type LUMO of the parent neutral species. Our findings represent a novel approach to achieve π-aromaticity into a fully saturated system which has traditionally been dominated by σ-aromaticity.
  • 加载中
    1. [1]

      P.J. Garratt, Aromaticity, Wiley, Hoboken, 1986.

    2. [2]

      V.I. Minkin, M.N. Glukhovtsev, B.Y. Simkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, Wiley, Hoboken, 1994.

    3. [3]

      P.v.R. Schleyer, Chem. Rev. 101 (2001) 1115–1118.  doi: 10.1021/cr0103221

    4. [4]

      X.Y. Cao, Q. Zhao, Z. Lin, H. Xia, Acc. Chem. Res. 47 (2014) 341–354.  doi: 10.1021/ar400087x

    5. [5]

      C. Zhu, H. Xia, Acc. Chem. Res. 51 (2018) 1691–1700.  doi: 10.1021/acs.accounts.8b00175

    6. [6]

      M. Rosenberg, C. Dahlstrand, K. Kilså, H. Ottosson, Chem. Rev. 114 (2014) 5379–5425.  doi: 10.1021/cr300471v

    7. [7]

      J. Oh, Y.M. Sung, Y. Hong, D. Kim, Acc. Chem. Res. 51 (2018) 1349–1358.  doi: 10.1021/acs.accounts.7b00629

    8. [8]

      D. Chen, Y. Hu, H. Xia, Chem. Rev. 120 (2020) 12994–13086.  doi: 10.1021/acs.chemrev.0c00392

    9. [9]

      Y. Li, H. Chen, L. Qu, R. Bai, Y. Lan, Chin. Chem. Lett. 30 (2019) 2249–2253.  doi: 10.3390/en12122249

    10. [10]

      C. Liu, B. Qiao, L. Qu, et al., Org. Chem. Front. 9 (2022) 4009–4015.  doi: 10.1039/d2qo00797e

    11. [11]

      Y. Huang, D. Chen, J. Zhu, Z. Sun, Chin. Chem. Lett. 33 (2022) 2139–2142.  doi: 10.1016/j.cclet.2021.08.038

    12. [12]

      F.D. Proft, P. Geerlings, Chem. Rev. 101 (2001) 1451–1464.  doi: 10.1021/cr9903205

    13. [13]

      M. Solà, Nat. Chem. 14 (2022) 585–590.  doi: 10.1038/s41557-022-00961-w

    14. [14]

      D. Chen, Q. Xie, J. Acc. Chem. Res. 52 (2019) 1449–1460.  doi: 10.1021/acs.accounts.9b00092

    15. [15]

      C. Zhu, X. Zhou, H. Xing, et al., Angew. Chem. Int. Ed. 54 (2015) 3102–3106.  doi: 10.1002/anie.201411220

    16. [16]

      Y. Hao, J. Wu, J. Zhu, Chem. Eur. J. 21 (2015) 18805–18810.  doi: 10.1002/chem.201502390

    17. [17]

      J. Wu, X. Liu, Y. Hao, et al., Chem. Asian J. 13 (2018) 3691–3696.  doi: 10.1002/asia.201801279

    18. [18]

      X. Zhou, J. Wu, Y. Hao, et al., Chem. Eur. J. 24 (2018) 2389–2395.  doi: 10.1002/chem.201703870

    19. [19]

      Y. Huang, C. Dai, J. Zhu, Chem. Asian J. 15 (2020) 3444–3450.  doi: 10.1002/asia.202000900

    20. [20]

      Y. Li, S. Dong, J. Guo, et al., J. Am. Chem. Soc. 145 (2023) 21159–21164.  doi: 10.1021/jacs.3c06555

    21. [21]

      V.Y. Lee, A. Sekiguchi, M. Ichinohe, N. Fukaya, J. Organomet. Chem. 611 (2000) 228–235.  doi: 10.1016/S0022-328X(00)00438-1

    22. [22]

      Y.F. Yang, G.J. Cheng, J. Zhu, et al., Chem. Eur. J. 18 (2012) 7516–7524.  doi: 10.1002/chem.201103443

    23. [23]

      C.B. Yildiz, K.I. Leszczyńska, S. González-Gallardo, et al., Angew. Chem. Int. Ed. 59 (2020) 15087–15092.  doi: 10.1002/anie.202006283

    24. [24]

      K. Abersfelder, A.J.P. White, H.S. Rzepa, D. Scheschkewitz, Science 327 (2010) 564–566.  doi: 10.1126/science.1181771

    25. [25]

      A. Tsurusaki, C. Iizuka, K. Otsuka, S. Kyushin, J. Am. Chem. Soc. 135 (2013) 16340–16343.  doi: 10.1021/ja409074m

    26. [26]

      J. Keuter, K. Schwedtmann, A. Hepp, et al., Angew. Chem. Int. Ed. 56 (2017) 13866–13871.  doi: 10.1002/anie.201705787

    27. [27]

      T. Iwamoto, T. Abe, K. Sugimoto, et al., Angew. Chem. Int. Ed. 58 (2019) 4371–4375.  doi: 10.1002/anie.201900824

    28. [28]

      J. Keuter, A. Hepp, C.G. Daniliuc, M. Feldt, F. Lips, Angew. Chem. Int. Ed. 60 (2021) 21761–21766.  doi: 10.1002/anie.202104341

    29. [29]

      K. Schwedtmann, M. Quest, B.J. Guddorf, et al., Chem. Eur. J. 27 (2021) 17361–17368.  doi: 10.1002/chem.202103101

    30. [30]

      T. Iwamoto, N. Akasaka, S. Ishida, Nat. Commun. 5 (2014) 5353.  doi: 10.1038/ncomms6353

    31. [31]

      S. Kyushin, Organosilicon clusters. In: V.Y. Lee (Ed.), Organosilicon Compounds: Theory and Experiment (Synthesis), Academic Press, New York, 2017, p. 69.

    32. [32]

      Y. Heider, D. Scheschkewitz, Chem. Rev. 121 (2021) 9674–9718.  doi: 10.1021/acs.chemrev.1c00052

    33. [33]

      V.Y. Lee, K. Takanashi, T. Matsuno, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 126 (2004) 4758–4759.  doi: 10.1021/ja030662z

    34. [34]

      K. Suzuki, T. Matsuo, D. Hashizume, et al., Science 331 (2011) 1306–1309.  doi: 10.1126/science.1199906

    35. [35]

      S. Inoue, J.D. Epping, E. Irran, M. Driess, J. Am. Chem. Soc. 133 (2011) 8514–8517.  doi: 10.1021/ja2033475

    36. [36]

      S.H. Zhang, H.W. Xi, K.H. Lim, C.W. So, Angew. Chem. Int. Ed. 52 (2013) 12364–12367.  doi: 10.1002/anie.201305567

    37. [37]

      X. Sun, T. Simler, R. Yadav, R. Köppe, P.W. Roesky, J. Am. Chem. Soc. 141 (2019) 14987–14990.  doi: 10.1021/jacs.9b08018

    38. [38]

      H.H. Freedman, A.M. Frantz, J. Am. Chem. Soc. 84 (1962) 4165–4167.  doi: 10.1021/ja00880a049

    39. [39]

      G.A. Olah, J.M. Bollinger, A.M. White, J. Am. Chem. Soc. 91 (1969) 3667–3669.  doi: 10.1021/ja01041a052

    40. [40]

      S. Masamune, Y. Kabe, S. Collins, D.J. Williams, R. Jones, J. Am. Chem. Soc. 107 (1985) 5552–5553.  doi: 10.1021/ja00305a053

    41. [41]

      R. Jones, D.J. Williams, Y. Kabe, S. Masamune, Angew. Chem. Int. Ed. 25 (1986) 173–174.  doi: 10.1002/anie.198601731

    42. [42]

      K. Takanashi, V.Y. Lee, M. Ichinohe, A. Sekiguchi, Chem. Lett. 36 (2007) 1158–1159.  doi: 10.1246/cl.2007.1158

    43. [43]

      T. Nukazawa, T. Iwamoto, J. Am. Chem. Soc. 142 (2020) 9920–9924.  doi: 10.1021/jacs.0c03874

    44. [44]

      T. Nukazawa, T. Iwamoto, Chem. Commun. 57 (2021) 9692–9695.  doi: 10.1039/d1cc04332c

    45. [45]

      T. Koike, R. Osawa, S. Ishida, T. Iwamoto, Angew. Chem. Int. Ed. 61 (2022) e2021175.

    46. [46]

      S. Kyushin, Y. Kurosaki, K. Otsuka, et al., Nat. Commun. 11 (2020) 4009.  doi: 10.1038/s41467-020-17815-z

    47. [47]

      S.K. Sarkar, R. Chaliha, M.M. Siddiqui, et al., Angew. Chem. Int. Ed. 59 (2020) 23015–23019.  doi: 10.1002/anie.202009638

    48. [48]

      A. Göller, H. Heydt, T. Clark, J. Org. Chem. 61 (1996) 5840–5846.  doi: 10.1021/jo960387h

    49. [49]

      A. Göller, T. Clark, J. Mol. Model. 6 (2000) 133–149.  doi: 10.1007/PL00010724

    50. [50]

      C.P. Priyakumari, E.D. Jemmis, J. Am. Chem. Soc. 135 (2013) 16026–16029.  doi: 10.1021/ja408308g

    51. [51]

      R. West, D. Eggerding, J. Perkins, D. Handy, E.C. Tuazon, J. Am. Chem. Soc. 101 (1979) 1710–1714.  doi: 10.1021/ja00501a010

    52. [52]

      Q. Zhu, S. Chen, D. Chen, et al., Fundam. Res. 3 (2023) 926–938.  doi: 10.1016/j.fmre.2023.04.004

    53. [53]

      K.B. Wiberg, Tetrahedron 24 (1968) 1083–1096.  doi: 10.1016/0040-4020(68)88057-3

    54. [54]

      H.B. Yokelson, A.J. Millevolte, G.R. Gillette, R. West, J. Am. Chem. Soc. 109 (1987) 6865–6866.  doi: 10.1021/ja00256a058

    55. [55]

      P.P. Power, Chem. Rev. 99 (1999) 3463–3504.

    56. [56]

      T. Iwamoto, S. Ishida, Multiple bonds with silicon: recent advances in synthesis, structure, and functions of stable disilenes. In: D. Scheschkewitz, (Ed.), Functional Molecular Silicon Compounds Ⅱ. Structure and Bonding, Springer International Publishing: Cham, 2014; pp 125–202.

    57. [57]

      S. Sase, N. Kano, T. Kawashima, J. Am. Chem. Soc. 124 (2002) 9706–9707.  doi: 10.1021/ja026107z

  • 加载中
    1. [1]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    2. [2]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    3. [3]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    4. [4]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    5. [5]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    6. [6]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

Metrics
  • PDF Downloads(3)
  • Abstract views(164)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return