Bone tissue engineering scaffold materials: Fundamentals, advances, and challenges
-
* Corresponding authors.
E-mail addresses: dlmchcsd@126.com (X. Zhuang), dongxf@dlut.edu.cn (X. Dong).
Citation:
Chang Xu, Zhize Liu, Xi Chen, Yang Gao, Wenjun Wang, Xijing Zhuang, Hao Zhang, Xufeng Dong. Bone tissue engineering scaffold materials: Fundamentals, advances, and challenges[J]. Chinese Chemical Letters,
;2024, 35(2): 109197.
doi:
10.1016/j.cclet.2023.109197
D.C. Wascher, L. Bulthuis, Curr. Rev. Musculoskelet. Med. 7 (2014) 387–393.
doi: 10.1007/s12178-014-9242-y
Z. Xu, Z. Zhu, H. Chen, et al., Biomaterials 282 (2022) 121390.
doi: 10.1016/j.biomaterials.2022.121390
C. Xu, Y. Kang, S. Guan, et al., Chin. Chem. Lett. 34 (2023) 107825.
doi: 10.1016/j.cclet.2022.107825
K. Huang, G. Liu, Z. Gu, et al., Chin. Chem. Lett. 31 (2020) 3190–3194.
doi: 10.1016/j.cclet.2020.07.002
A.Y. Rioja, E.L.H. Daley, J.C. Habif, et al., Acta Biomater. 55 (2017) 144–152.
doi: 10.1016/j.actbio.2017.03.050
Y. Kang, C. Xu, L. Meng, et al., Bioact. Mater. 18 (2022) 26–41.
N. Xue, X. Ding, R. Huang, et al., Pharmaceuticals 15 (2022) 879.
doi: 10.3390/ph15070879
J.F. Keating, A.H.R.W. Simpson, C.M. Robinson, J. Bone Joint Surg. Br. 87 (2005) 142–150.
O. Faour, R. Dimitriou, C.A. Cousins, et al., Injury 42 (2011) S87–S90.
doi: 10.1016/j.injury.2011.06.020
L. Wang, Y. Wu, T. Hu, et al., Acta Biomater. 96 (2019) 175–187.
doi: 10.1016/j.actbio.2019.06.035
Q. Wang, J. Xu, H. Jin, et al., Chin. Chem. Lett. 28 (2017) 1801–1807.
doi: 10.1016/j.cclet.2017.07.011
M.N. Collins, G. Ren, K. Young, et al., Adv. Funct. Mater. 31 (2021) 2010609.
doi: 10.1002/adfm.202010609
G. Turnbull, J. Clarke, F. Picard, et al., Bioact. Mater. 3 (2018) 278–314.
S. Anjum, F. Rahman, P. Pandey, et al., Int. J. Mol. Sci. 23 (2022) 9206.
doi: 10.3390/ijms23169206
H. Qu, H. Fu, Z. Han, et al., RSC Adv. 9 (2019) 26252–26262.
doi: 10.1039/C9RA05214C
L. Huang, J. Zhang, X. Liu, et al., Chin. Chem. Lett. 32 (2021) 234–238.
doi: 10.1016/j.cclet.2020.11.046
X. Liu, P. Ma, Ann. Biomed. Eng. 32 (2004) 477–486.
doi: 10.1023/B:ABME.0000017544.36001.8e
A.R. Shrivats, M.C. McDermott, J.O. Hollinger, Drug Discov. Today 19 (2014) 781–786.
doi: 10.1016/j.drudis.2014.04.010
F. Pati, T. Song, G. Rijal, et al., Biomaterials 37 (2015) 230–241.
doi: 10.1016/j.biomaterials.2014.10.012
F. Zhang, M.W. King, Adv. Healthc. Mater. 9 (2020) e1901358.
doi: 10.1002/adhm.201901358
L. Cui, J. Zhang, J. Zou, et al., Biomaterials 230 (2020) 119617.
doi: 10.1016/j.biomaterials.2019.119617
T. Zhu, Y. Cui, M. Zhang, et al., Bioact. Mater. 5 (2020) 584–601.
M. Yi, Y. Nie, C. Zhang, et al., J. Immunol. Res. 2022 (2022) 4450196.
C. Xu, Y. Kang, X. Dong, et al., Chin. Chem. Lett. 34 (2023) 107528.
doi: 10.1016/j.cclet.2022.05.042
L. Roseti, V. Parisi, M. Petretta, et al., Mater. Sci. Eng. C 78 (2017) 1246–1262.
doi: 10.1016/j.msec.2017.05.017
R. Wang, M. Wang, R. Jin, et al., Adv. Sci. 10 (2023) e2207698.
doi: 10.1002/advs.202207698
Ž. Perić Kačarević, P. Rider, S. Alkildani, et al., Int. J. Artif. Organs. 43 (2019) 69–86.
M.M. Martino, P.S. Briquez, E. Guc, et al., Science 343 (2014) 885–888.
doi: 10.1126/science.1247663
M.A. Woodruff, C. Lange, J. Reichert, et al., Mater. Today 15 (2012) 430–435.
doi: 10.1016/S1369-7021(12)70194-3
C. Barberio, J. Saez, A. Withers, et al., Adv. Healthc. Mater. 11 (2022) e2200941.
doi: 10.1002/adhm.202200941
T.M. Koushik, C.M. Miller, E. Antunes, Adv. Healthc. Mater. 12 (2023) e2202766.
doi: 10.1002/adhm.202202766
U.G.K. Wegst, H. Bai, E. Saiz, et al., Nat. Mater. 14 (2014) 23–36.
V.S. Kattimani, S. Kondaka, K.P. Lingamaneni, Bone Tissue Regen. Insights 7 (2016) BTRI.S36138.
doi: 10.4137/BTRI.S36138
V. Ebacher, R.Z. Wang, Adv. Funct. Mater. 19 (2009) 57–66.
doi: 10.1002/adfm.200801234
N.G. Sahoo, Y. Pan, L. Li, et al., Nanomedicine 8 (2013) 639–653.
doi: 10.2217/nnm.13.44
X. Wang, S. Xu, S. Zhou, et al., Biomaterials 83 (2016) 127–141.
doi: 10.1016/j.biomaterials.2016.01.012
J.D. Currey, Osteoporos. Int. 14 (2003) S29–S36.
doi: 10.1007/s00198-003-1470-8
A.I. Alford, K.M. Kozloff, K.D. Hankenson, Int. J. Biochem. Cell Biol. 65 (2015) 20–31.
doi: 10.1016/j.biocel.2015.05.008
P. Chocholata, V. Kulda, V. Babuska, Materials 12 (2019) 568.
doi: 10.3390/ma12040568
S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Mater. Today 16 (2013) 496–504.
doi: 10.1016/j.mattod.2013.11.017
T. Bai, K. Zhao, Z. Lu, et al., Chin. Chem. Lett. 32 (2021) 1051–1054.
doi: 10.1016/j.cclet.2020.07.034
M. Keeney, J.J. van den Beucken, P.M. van der Kraan, et al., Biomaterials 31 (2010) 2893–2902.
doi: 10.1016/j.biomaterials.2009.12.041
F. Diomede, G.D. Marconi, L. Fonticoli, et al., Int. J. Mol. Sci. 21 (2020) 3242.
doi: 10.3390/ijms21093242
G.L. Koons, M. Diba, A.G. Mikos, Nat. Rev. Mater. 5 (2020) 584–603.
doi: 10.1038/s41578-020-0204-2
X. Hao, X. Zhang, Y. Hu, et al., Chin. Chem. Lett. 34 (2023) 107965.
doi: 10.1016/j.cclet.2022.107965
S. Cao, Y. Zhao, Y. Hu, et al., Compos. Part B: Eng. 202 (2020) 108445.
doi: 10.1016/j.compositesb.2020.108445
Q. Zhang, K. Huang, J. Tan, et al., Chin. Chem. Lett. 33 (2022) 1623–1626.
doi: 10.1016/j.cclet.2021.09.105
P. Feng, P. Wu, C. Gao, et al., Adv. Sci. 5 (2018) 1700817.
doi: 10.1002/advs.201700817
C.E. Wen, Y. Yamada, K. Shimojima, et al., J. Mater. Res. Technol. 17 (2002) 2633–2639.
doi: 10.1557/JMR.2002.0382
M.A. Lopez-Heredia, J. Sohier, C. Gaillard, et al., Biomaterials 29 (2008) 2608–2615.
doi: 10.1016/j.biomaterials.2008.02.021
M. Yazdimamaghani, M. Razavi, D. Vashaee, et al., Mater. Sci. Eng. C 71 (2017) 1253–1266.
doi: 10.1016/j.msec.2016.11.027
J. Ballarre, R. Seltzer, E. Mendoza, et al., Mater. Sci. Eng. C 31 (2011) 545–552.
doi: 10.1016/j.msec.2010.11.030
D.H. Lee, N. Tripathy, J.H. Shin, et al., Int. J. Biol. Macromol. 95 (2017) 14–23.
doi: 10.1016/j.ijbiomac.2016.11.002
S. Deville, E. Saiz, A.P. Tomsia, Biomaterials 27 (2006) 5480–5489.
doi: 10.1016/j.biomaterials.2006.06.028
T. Reiter, T. Panick, K. Schuhladen, Bioact. Mater. 4 (2018) 1–7.
E.B. Toloue, S. Karbasi, H. Salehi, et al., Mater. Sci. Eng. C 99 (2019) 1075–1091.
doi: 10.1016/j.msec.2019.02.062.022
S. Pieralli, R.J. Kohal, R.E. Jung, et al., J. Dent. Res. 96 (2017) 38–46.
doi: 10.1177/0022034516664043
W. Weng, W. Wu, M. Hou, et al., J. Mater. Sci. 56 (2021) 8309–8333.
doi: 10.1007/s10853-021-05824-2
K. Sakthiabirami, J. Kang, J. Jang, et al., Mater. Sci. Eng. C 123 (2021) 111950.
doi: 10.1016/j.msec.2021.111950
C. Meng, D. Tang, X. Liu, et al., Int. J. Biol. Macromol. 235 (2023) 123781.
doi: 10.1016/j.ijbiomac.2023.123781
J. Ju, X. Peng, K. Huang, et al., Polymer 180 (2019) 121707.
doi: 10.1016/j.polymer.2019.121707
X. Hu, W. Zhao, Z. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107451.
doi: 10.1016/j.cclet.2022.04.049
H. Wang, E. Wang, Y. Huang, et al., J. Appl. Polym. Sci. 137 (2020) e49571.
doi: 10.1002/app.49571
B. Felice, M.A. Sanchez, M.C. Socci, et al., Mater. Sci. Eng. C 93 (2018) 724–738.
doi: 10.1016/j.msec.2018.08.009
M. Khalili, H. Keshvari, R. Imani, et al., Polym. Adv. Technol. 33 (2022) 782–794.
doi: 10.1002/pat.5555
X. Liang, P. Duan, J. Gao, et al., ACS Biomater. Sci. Eng. 4 (2018) 3506–3521.
doi: 10.1021/acsbiomaterials.8b00552
Z. Ma, Q. Wang, W. Xie, et al., Polym. Compos. 42 (2021) 3593–3602.
doi: 10.1002/pc.26081
W. Huang, X. Shi, L. Ren, et al., Biomaterials 31 (2010) 4278–4285.
doi: 10.1016/j.biomaterials.2010.01.059
B. Ashwin, B. Abinaya, T.P. Prasith, et al., Int. J. Biol. Macromol. 162 (2020) 523–532.
doi: 10.1016/j.ijbiomac.2020.06.157
D. Atila, A. Karatas, A. Evcin, et al., Cellulose 26 (2019) 9765–9785.
doi: 10.1007/s10570-019-02741-1
X. Hu, Z. Zhang, H. Wu, et al., Biomater. Adv. 152 (2023) 213501.
doi: 10.1016/j.bioadv.2023.213501
B. Nasri-Nasrabadi, A. Kaynak, P. Heidarian, et al., Polym. Adv. Technol. 29 (2018) 2553–2559.
doi: 10.1002/pat.4367
Y. Zhu, L. Kong, F. Farhadi, et al., Biomaterials 192 (2019) 149–158.
doi: 10.1016/j.biomaterials.2018.11.017
S. Saravanan, R.S. Leena, N. Selvamurugan, Int. J. Biol. Macromol. 93 (2016) 1354–1365.
doi: 10.1016/j.ijbiomac.2016.01.112
T. Li, Y. Zhang, H. Ren, et al., Carbohydr. Polym. 260 (2021) 117765.
doi: 10.1016/j.carbpol.2021.117765
D. Atila, D. Keskin, A. Tezcaner, Mater. Sci. Eng. C 69 (2016) 1103–1115.
doi: 10.1016/j.msec.2016.08.015
A. Zheng, L. Cao, Y. Liu, et al., Carbohydr. Polym. 199 (2018) 244–255.
doi: 10.1016/j.carbpol.2018.06.093
Z. Li, T. Du, C. Ruan, et al., Bioact. Mater. 6 (2021) 1491–1511.
Y. Xie, K. Lee, X. Wang, et al., J. Mater. Chem. B 9 (2021) 8491–8500.
doi: 10.1039/D1TB01559A
Y. Huang, X. Yu, L. He, et al., Chin. Chem. Lett. 31 (2020) 1797–1800.
doi: 10.1016/j.cclet.2020.01.039
F. Xue, J. Cornelissen, Q. Yuan, et al., Chin. Chem. Lett. 34 (2023) 107448.
doi: 10.1016/j.cclet.2022.04.046
Z. Du, H. Leng, L. Guo, et al., Compos. Part B: Eng. 190 (2020) 107937.
doi: 10.1016/j.compositesb.2020.107937
A. Farzin, S. Hassan, S. Ebrahimi-Barough, et al., Mater. Sci. Eng. C 105 (2019) 110009.
doi: 10.1016/j.msec.2019.110009
H. Wu, R. Zhang, B. Hu, et al., Chin. Chem. Lett. 32 (2021) 3940–3947.
doi: 10.1016/j.cclet.2021.04.043
A.G. Mikos, S.W. Herring, P. Ochareon, et al., Tissue Eng. 12 (2006) 3307–3309.
doi: 10.1089/ten.2006.12.3307
E.A. Abou Neel, W. Chrzanowski, V.M. Salih, et al., J. Den. 42 (2014) 915–928.
doi: 10.1016/j.jdent.2014.05.008
G. Bouet, D. Marchat, M. Cruel, et al., Tissue Eng. Part B: Rev. 21 (2015) 133–156.
H. Li, H. Li, B. Wang, et al., Chin. Chem. Lett. 25 (2014) 1635–1638.
doi: 10.1016/j.cclet.2014.06.019
C.M. Murphy, M.G. Haugh, F.J. O'Brien, Biomaterials 31 (2010) 461–466.
doi: 10.1016/j.biomaterials.2009.09.063
K. Huang, J. Huang, J. Zhao, et al., Chin. Chem. Lett. 33 (2022) 1941-1845.
doi: 10.1016/j.cclet.2021.10.073
W. Xu, J. Tian, Z. Liu, et al., Mater. Sci. Eng. C 105 (2019) 110015.
doi: 10.1016/j.msec.2019.110015
S. Wang, L. Liu, K. Li, et al., Mater. Des. 168 (2019) 107643.
doi: 10.1016/j.matdes.2019.107643
W. Xu, X. Lu, M.D. Hayat, et al., J. Mater. Res. Technol. 8 (2019) 3696–3704.
doi: 10.1016/j.jmrt.2019.06.021
J.W. Lee, H. Han, K. Han, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 716–721.
doi: 10.1073/pnas.1518238113
S. Kamrani, C. Fleck, Biometals 32 (2019) 185–193.
doi: 10.1007/s10534-019-00170-y
F. Witte, V. Kaese, H. Haferkamp, et al., Biomaterials 26 (2005) 3557–3563.
doi: 10.1016/j.biomaterials.2004.09.049
D. Zhao, S. Huang, F. Lu, et al., Biomaterials 81 (2016) 84–92.
doi: 10.1016/j.biomaterials.2015.11.038
L. Chen, Z. Lin, M. Wang, et al., J. Orthop. Transl. 17 (2019) 133–137.
J. Brandaoneto, V. Stefan, B.B. Mendonca, et al., Nutr. Res. 15 (1995) 335–358.
doi: 10.1016/0271-5317(95)00003-8
M. Nagata, B. Lonnerdal, J. Nutr. Biochem. 22 (2011) 172–178.
doi: 10.1016/j.jnutbio.2010.01.003
S. Zhang, J. Li, Y. Song, et al., Mater. Sci. Eng. C 29 (2009) 1907–1912.
doi: 10.1016/j.msec.2009.03.001
Y. He, H. Tao, Y. Zhang, et al., Chin. Sci. Bull. 54 (2009) 484–491.
J. Yu, L. Xu, K. Li, et al., Sci. Rep. 7 (2017) 3440.
doi: 10.1038/s41598-017-03661-5
H. Pan, H. Gao, Q. Li, et al., J. Mater. Chem. B 8 (2020) 6100–6114.
doi: 10.1039/D0TB00901F
H. Ma, C. Feng, J. Chang, et al., Acta Biomater 79 (2018) 37–59.
doi: 10.1016/j.actbio.2018.08.026
Y. Huang, C. Wu, X. Zhang, et al., Acta Biomater 66 (2018) 81–92.
doi: 10.1016/j.actbio.2017.08.044
T. Li, B. Ma, J. Xue, et al., Adv. Healthc. Mater. 9 (2020) e1901211.
doi: 10.1002/adhm.201901211
A. Vezenkova, J. Locs. Bioact. Mater. 17 (2022) 109–124.
L. Zhang, G. Yang, B. Johnson, et al., Acta Biomater 84 (2019) 16–33.
doi: 10.1016/j.actbio.2018.11.039
K. Zhou, P. Yu, X. Shi, et al., ACS Nano 13 (2019) 9595–9606.
doi: 10.1021/acsnano.9b04723
A. Kakuta, T. Tanaka, M. Chazono, et al., Biomater. Res. 23 (2019) 12.
doi: 10.1186/s40824-019-0161-2
K.E.G. Dienel, B. van Bochove, J.V. Seppala, Biomacromolecules 21 (2020) 366–375.
doi: 10.1021/acs.biomac.9b01272
H. Ren, Y. Cui, A. Li, et al., Chin. Chem. Lett. 29 (2018) 395–398.
doi: 10.1016/j.cclet.2018.01.023
L.L. Hench, J.M. Polak, Science 295 (2002) 1014–1017.
doi: 10.1126/science.1067404
W. Xiao, M.A. Zaeem, G. Li, et al., J. Mater. Sci. 52 (2017) 9039–9054.
doi: 10.1007/s10853-017-0777-3
L. Wu, X. Shi, Z. Wu, Adv. Funct. Mater. 33 (2023) 2211454.
doi: 10.1002/adfm.202211454
Z. Bao, C. Xian, Q. Yuan, et al., Adv. Healthc. Mater. 8 (2019) e1900670.
doi: 10.1002/adhm.201900670
L. Wang, L. Chen, J. Wang, et al., Chin. Chem. Lett. 33 (2022) 1956–1962.
doi: 10.1016/j.cclet.2021.10.070
P. Ruschhaupt, A. Varzi, S. Passerini, ChemSusChem 13 (2020) 763–770.
doi: 10.1002/cssc.201902863
Y. Li, X. Wang, Y. Wei, et al., Chin. Chem. Lett. 28 (2017) 2053–2057.
doi: 10.1016/j.cclet.2017.09.004
M.L. Becker, J.A. Burdick, Chem. Rev. 121 (2021) 10789–10791.
doi: 10.1021/acs.chemrev.1c00354
Z. Zhao, X. Fan, S. Wang, et al., Chin. Chem. Lett. 34 (2023) 107892.
doi: 10.1016/j.cclet.2022.107892
D. Liu, M. Nikoo, G. Boran, et al., Annu. Rev. Food Sci. Technol. 6 (2015) 527–557.
doi: 10.1146/annurev-food-031414-111800
M.F. Abazari, F. Soleimanifar, M. Amini Faskhodi, et al., J. Cell. Physiol. 235 (2020) 1155–1164.
doi: 10.1002/jcp.29029
R. Ashraf, H.S. Sofi, M.A. Beigh, et al., Adv. Exp. Med. Biol. 1077 (2018) 501–525.
J.X. Yap, C.P. Leo, N.H.M. Yasin, et al., Bioengineered 13 (2022) 2226–2247.
doi: 10.1080/21655979.2021.2024322
Y. Chen, N. Kawazoe, G. Chen, Acta Biomater 67 (2018) 341–353.
doi: 10.1016/j.actbio.2017.12.004
C. Xu, Z. Wei, H. Gao, et al., Adv. Sci. 4 (2017) 1600410.
doi: 10.1002/advs.201600410
F. Zhang, Y. Xie, H. Celik, et al., Biofabrication 11 (2019) 035020.
doi: 10.1088/1758-5090/ab15ce
M. Younesi, A. Islam, V. Kishore, et al., Adv. Funct. Mater. 24 (2014) 5762–5770.
doi: 10.1002/adfm.201400828
H. Sun, J. Zhou, Z. Huang, et al., Int. J. Nanomed. 12 (2017) 3109–3120.
doi: 10.2147/IJN.S128030
S. Fu, P. Ni, B. Wang, et al., Biomaterials 33 (2012) 4801–4809.
doi: 10.1016/j.biomaterials.2012.03.040
S.E. Enderami, S.F. Ahmadi, R.N. Mansour, et al., Mater. Sci. Eng. C 108 (2020) 110398.
doi: 10.1016/j.msec.2019.110398
R. Zhang, Y. Zheng, T. Liu, Chin. Chem. Lett. 33 (2022) 1599–1603.
doi: 10.1016/j.cclet.2021.09.018
J.M. Gosline, P.A. Guerette, C.S. Ortlepp, et al., J. Exp. Biol. 202 (1999) 3295–3303.
doi: 10.1242/jeb.202.23.3295
Y. Wang, S. Zhang, J. Wang, Chin. Chem. Lett. 32 (2021) 1603–1614.
doi: 10.1016/j.cclet.2020.11.073
R. Li, G. Chen, X. Ma, et al., Chin. Chem. Lett. 22 (2011) 1107–1110.
doi: 10.1016/j.cclet.2011.03.018
J.H. Choi, D.K. Kim, J.E. Song, et al., Adv. Exp. Med. Biol. 1077 (2018) 371–387.
G. Lai, K.T. Shalumon, S. Chen, et al., Carbohyd. Polym. 111 (2014) 288–297.
doi: 10.1016/j.carbpol.2014.04.094
J.Y. Kim, B. Yang, J.H. Ahn, et al., J. Adv. Prosthodont. 6 (2014) 539–546.
doi: 10.4047/jap.2014.6.6.539
Y.Y. Jo, S.G. Kim, K.J. Kwon, et al., Int. J. Mol. Sci. 18 (2017) 858.
doi: 10.3390/ijms18040858
L. Upadhyaya, J. Singh, V. Agarwal, et al., Carbohyd. Polym. 91 (2013) 452–466.
doi: 10.1016/j.carbpol.2012.07.076
R. Zhang, S. Chang, Y. Jing, et al., Carbohydr. Polym. 314 (2023) 120890.
doi: 10.1016/j.carbpol.2023.120890
F. Tao, Y. Cheng, X. Shi, et al., Carbohydr. Polym. 230 (2020) 115658.
doi: 10.1016/j.carbpol.2019.115658
L. Zheng, J. Zhu, Carbohydr. Polym. 54 (2003) 527–530.
doi: 10.1016/j.carbpol.2003.07.009
R.C. Goy, D. de Britto, O.B.G. Assis, Polimeros 19 (2009) 241–247.
doi: 10.1590/S0104-14282009000300013
K. Liu, X. Dong, Y. Wang, et al., Carbohydr. Polym. 298 (2022) 120047.
doi: 10.1016/j.carbpol.2022.120047
B. Maharjan, J. Park, V.K. Kaliannagounder, et al., Carbohydr. Polym. 251 (2021) 117023.
doi: 10.1016/j.carbpol.2020.117023
A.T.H. Wu, T. Aoki, M. Sakoda, et al., Biomacromolecules 16 (2015) 166–173.
doi: 10.1021/bm501356c
Z. Cao, Q. Li, G. Wang, Polym. Chem. 8 (2017) 6817–6823.
doi: 10.1039/C7PY01153A
U. Malik, Q. Duan, D. Niazi, Chin. Chem. Lett. 34 (2023) 108071.
doi: 10.1016/j.cclet.2022.108071
E.V. Vasconcelos, F.B. da Luz, S.P.A. da Paz, et al., J. Mater. Res. Technol. 23 (2023) 5923–5938.
doi: 10.1016/j.jmrt.2023.02.171
J.M. Miszuk, T. Xu, Q. Yao, et al., Appl. Mater. Today 10 (2018) 194–202.
doi: 10.1016/j.apmt.2017.12.004
S. Cheng, Y. Jin, N. Wang, et al., Adv. Mater. 29 (2017) 201700171.
E. Llorens, S. Calderon, L.J. del Valle, et al., Mater. Sci. Eng. C 50 (2015) 74–84.
doi: 10.1016/j.msec.2015.01.100
Y. Dai, T. Lu, M. Shao, et al., Front. Bioeng. Biotechnol. 10 (2022) 1011783.
doi: 10.3389/fbioe.2022.1011783
F. Wu, C. Liu, B. O'Neill, et al., Appl. Surf. Sci. 258 (2012) 7589–7595.
doi: 10.1016/j.apsusc.2012.04.094
A. Asti, L. Gioglio, Int. J. Artif. Organs 37 (2014) 187–205.
doi: 10.5301/ijao.5000307
P. Grossen, D. Witzigmann, S. Sieber, et al., J. Control. Release 260 (2017) 46–60.
doi: 10.1016/j.jconrel.2017.05.028
T.K. Dash, V.B. Konkimalla, J. Control. Release 158 (2012) 15–33.
doi: 10.1016/j.jconrel.2011.09.064
T. Zhu, M. Jiang, M. Zhang, et al., Bioact. Mater. 9 (2022) 446–460.
R.P.F. Lanao, A.M. Jonker, J.G.C. Wolke, et al., Tissue Eng. Part B: Rev. 19 (2013)380–390.
F. Danhier, E. Ansorena, J.M. Silva, et al., J. Control. Release 161 (2012) 505–522.
doi: 10.1016/j.jconrel.2012.01.043
L. Wu, J. Ding, Biomaterials 25 (2004) 5821–5830.
doi: 10.1016/j.biomaterials.2004.01.038
A. Kumari, S.K. Yadav, S.C. Yadav, Colloid Surf. B 75 (2010) 1–18.
doi: 10.1016/j.colsurfb.2009.09.001
Y. Takeoka, M. Hayashi, N. Sugiyama, et al., Polym. J. 47 (2015) 164–170.
doi: 10.1038/pj.2014.121
G. Liu, T. Lu, X. Ji, et al., Chem. J. Chin. Univ. 40 (2019) 1552–1560.
J. Zhang, D. Tong, H. Song, et al., Adv. Mater. 34 (2022) e2202044.
doi: 10.1002/adma.202202044
M.M. Stevens, Mater. Today 11 (2008) 18–25.
X. Li, L. Wang, Y. Fan, et al., J. Biomed. Mater. Res. A 101 (2013) 2424–2435.
N. Shadjou, M. Hasanzadeh, Mater. Sci. Eng. C 55 (2015) 401–409.
doi: 10.1016/j.msec.2015.05.027
S. Hao, J. Meng, Y. Zhang, et al., Biomaterials 140 (2017) 16–25.
doi: 10.1016/j.biomaterials.2017.06.013
D. Wu, X. Chang, J. Tian, et al., J. Nanobiotechnology 19 (2021) 209.
doi: 10.1186/s12951-021-00958-6
Y. Jia, P. Zhang, Y. Sun, et al., Nanomed. Nanotechnol. 21 (2019) 102040.
doi: 10.1016/j.nano.2019.102040
S. Hu, Y. Zhou, Y. Zhao, et al., J. Tissue Eng. Regen. Med. 12 (2018) e2085–e2098.
doi: 10.1002/term.2641
M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27 (2009) 76–83.
doi: 10.1016/j.biotechadv.2008.09.002
Y.M.F. Chen, M. Guan, R.Y. Ren, et al., Int. J. Nanomed. 15 (2020) 2011–2026.
doi: 10.2147/IJN.S242919
D. Lee, D.N. Heo, H.R. Nah, et al., Int. J. Nanomed. 13 (2018) 7019–7031.
doi: 10.2147/IJN.S185715
R. Eivazzadeh-Keihan, A. Maleki, M. de la Guardia, et al., J. Adv. Res. 18 (2019) 185–201.
doi: 10.1016/j.jare.2019.03.011
G. Pagona, N. Tagmatarchis, Curr. Med. Chem. 13 (2006) 1789–1798.
doi: 10.2174/092986706777452524
B. Marrs, R. Andrews, T. Rantell, et al., J. Biomed. Mater. Res. A 77 (2006) 269–276.
X. Li, H. Liu, X. Niu, et al., Biomaterials 33 (2012) 4818–4827.
doi: 10.1016/j.biomaterials.2012.03.045
P. Yu, R. Bao, X. Shi, et al., Carbohydr. Polym. 155 (2017) 507–515.
doi: 10.1016/j.carbpol.2016.09.001
S. Saravanan, A. Chawla, M. Vairamani, et al., Int. J. Biol. Macromol. 104 (2017) 1975–1985.
doi: 10.1016/j.ijbiomac.2017.01.034
C. Zhao, X. Lu, C. Zanden, et al., Biomed. Mater. 10 (2015) 015019.
doi: 10.1088/1748-6041/10/1/015019
X. Zhang, D. Zeng, N. Li, et al., Sci. Rep. 6 (2016) 19361.
doi: 10.1038/srep19361
Y. Cheng, D. Ramos, P. Lee, et al., J. Biomed. Nanotechnol. 10 (2014) 287–298.
doi: 10.1166/jbn.2014.1753
R.P. Pirraco, T. Iwata, T. Yoshida, et al., Lab. Invest. 94 (2014) 663–673.
doi: 10.1038/labinvest.2014.55
Q. Cheng, K. Rutledge, E. Jabbarzadeh, Ann. Biomed. Eng. 41 (2013) 904–916.
doi: 10.1007/s10439-012-0728-8
R. Rozylo, Trends Food Sci. Tech. 102 (2020) 39–50.
doi: 10.1016/j.tifs.2020.06.005
A. Merivaara, J. Zini, E. Koivunotko, et al., J. Control. Release 336 (2021) 480–498.
doi: 10.1016/j.jconrel.2021.06.042
R. Najjar, C. Stubenrauch, J. Colloid Inter. Sci. 331 (2009) 214–220.
doi: 10.1016/j.jcis.2008.11.035
M. Wang, B. Li, Y. Liu, et al., ACS Omega 6 (2021) 35727–35737.
doi: 10.1021/acsomega.1c05623
E. Kolanthai, P.A. Sindu, D.K. Khajuria, et al., ACS Appl. Mater. Interfaces 10 (2018) 12441–12452.
doi: 10.1021/acsami.8b00699
J.M. Holzwarth, P.X. Ma, Biomaterials 32 (2011) 9622–9629.
doi: 10.1016/j.biomaterials.2011.09.009
K. Qiu, B. Chen, W. Nie, et al., ACS Appl. Mater. Interfaces 8 (2016) 4137–4148.
doi: 10.1021/acsami.5b11879
Y. Zhang, Y. Chen, T. Ding, et al., NPJ Regen. Med. 8 (2023) 28.
doi: 10.1038/s41536-023-00305-3
T. Wu, M. Ding, C. Shi, et al., Chin. Chem. Lett. 31 (2020) 617–625.
doi: 10.1016/j.cclet.2019.07.033
I. Jun, H. Han, J.R. Edwards, et al., Int. J. Mol. Sci. 19 (2018) 745.
doi: 10.3390/ijms19030745
J. Wang, G. Wang, H. Shan, et al., Biomater. Sci. 7 (2019) 963–974.
doi: 10.1039/C8BM01317A
G.C. Rutledge, S.V. Fridrikh, Adv. Drug Deliv. Rev. 59 (2007) 1384–1391.
doi: 10.1016/j.addr.2007.04.020
Q. Yu, Y. Li, M. Wang, et al., Chin. Chem. Lett. 19 (2008) 223–226.
doi: 10.1016/j.cclet.2007.12.005
A. alogh, R. Cselkó, B. Démuth, et al., Int. J. Pharm. 495 (2015) 75–80.
doi: 10.1016/j.ijpharm.2015.08.069
A. Denchai, D. Tartarini, E. Mele, Front. Bioeng. Biotechnol. 6 (2018) 155.
doi: 10.3389/fbioe.2018.00155
J. Xie, M.R. Macewan, W.Z. Ray, et al., ACS Nano 4 (2010) 5027–5036.
doi: 10.1021/nn101554u
T. Xu, J.M. Miszuk, Y. Zhao, et al., Adv. Healthc. Mater. 4 (2015) 2238–2246.
doi: 10.1002/adhm.201500345
L. Li, G. Zhou, Y. Wang, et al., Biomaterials 37 (2015) 218–229.
doi: 10.1016/j.biomaterials.2014.10.015
Y. Zha, T. Lin, Y. Li, et al., Biomaterials 247 (2020) 119985.
doi: 10.1016/j.biomaterials.2020.119985
X. Wang, M. Jiang, Z. Zhou, et al., Compos. Part B: Eng. 110 (2017) 442–458.
doi: 10.1016/j.compositesb.2016.11.034
A. Zhang, F. Wang, L. Chen, et al., Chin. Chem. Lett. 32 (2021) 2923–2932.
doi: 10.1016/j.cclet.2021.03.073
P. Szymczyk-Ziółkowska, M.B. Łabowska, J. Detyna, et al., Biocybern. Biomed. Eng. 40 (2020) 624–638.
doi: 10.1016/j.bbe.2020.01.015
H. Zhou, H. Yang, S. Yao, et al., Chin. Chem. Lett. 33 (2022) 3681–3694.
doi: 10.1016/j.cclet.2021.11.018
X. Zhou, Y. Qian, L. Chen, et al., ACS Nano 17 (2023) 5140–5156.
doi: 10.1021/acsnano.3c00598
Xu Luo , Jinwen Xiao , Qiming Yang , Xiaolong Lu , Qianjun Huang , Xiaojun Ai , Bo Li , Li Sun , Long Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684
Yang Xu , Le Ma , Yang Wang , Chunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Xin Zhang , Junyu Chen , Xiang Pei , Linxin Yang , Liang Wang , Luona Chen , Guangmei Yang , Xibo Pei , Qianbing Wan , Jian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Yu-Qi Cao , Ying-Jie Lu , Li Zhang , Jing Zhang , Yin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788
Yanjing Li , Jiayin Li , Yuqi Chang , Yunfeng Lin , Lei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
Ran Wu , Dongxu Jiang , Hao Hu , Chenyu Yang , Liang Qin , Lulu Chen , Zehui Hu , Hualei Xu , Jinrong Li , Haiqiang Liu , Hua Guo , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Qiang Wang , Xiaodong Wang . 4-Aminoazobenzene: A novel negative ion matrix for enhanced MALDI tissue imaging of metabolites. Chinese Chemical Letters, 2024, 35(11): 109624-. doi: 10.1016/j.cclet.2024.109624
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Na Wang , Wang Luo , Huaiyi Shen , Huakai Li , Zejiang Xu , Zhiyuan Yue , Chao Shi , Hengyun Ye , Leping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696