Theoretical and experimental design in the study of sulfide-based solid-state battery and interfaces
-
* Corresponding author.
E-mail address: hujh@zzu.edu.cn (J. Hu).
Citation: Hongjie Xu, Yujie Su, Chenggong Zheng, Yuchen Wang, Yuping Tong, Zhongzheng Yang, Junhua Hu. Theoretical and experimental design in the study of sulfide-based solid-state battery and interfaces[J]. Chinese Chemical Letters, ;2024, 35(2): 109173. doi: 10.1016/j.cclet.2023.109173
O. Geden, Nat. Geosci. 9 (2016) 340–342.
doi: 10.1038/ngeo2699
J. Bednar, M. Obersteiner, A. Baklanov, et al., Nature 596 (2021) 377–383.
doi: 10.1038/s41586-021-03723-9
D. Sheyfer, R.G. Mariano, T. Kawaguchi, et al., Nano Lett. 23 (2023) 1–7.
doi: 10.1021/acs.nanolett.2c01015
M. Armand, J.M. Tarascon, Nature 451 (2008) 652–657.
doi: 10.1038/451652a
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928–935.
doi: 10.1126/science.1212741
M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy Environ. Sci. 5 (2012) 7854.
doi: 10.1039/c2ee21892e
B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4 (2011) 3287.
doi: 10.1039/c1ee01388b
Y. Zhang, T.T. Zuo, J. Popovic, et al., Mater. Today 33 (2020) 56–74.
doi: 10.1016/j.mattod.2019.09.018
X.B. Cheng, R. Zhang, C.Z. Zhao, et al., Chem. Rev. 117 (2017) 10403–10473.
doi: 10.1021/acs.chemrev.7b00115
W. Xu, J. Wang, F. Ding, X, et al., Energy Environ. Sci. 7 (2014) 513–537.
doi: 10.1039/C3EE40795K
N. Nitta, F. Wu, J.T. Lee, et al., Mater. Today 18 (2015) 252–264.
doi: 10.1016/j.mattod.2014.10.040
K. Takada, Acta Mater. 61 (2013) 759–770.
doi: 10.1016/j.actamat.2012.10.034
Y.S. Hu, Nat. Energy 1 (2016) 16042.
doi: 10.1038/nenergy.2016.42
J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141.
doi: 10.1038/nenergy.2016.141
J.W. Choi, D. Aurbach, Nat. Rev. Mater. 1 (2016) 1–16.
D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12 (2017) 194–206.
doi: 10.1038/nnano.2017.16
D. Wu, L. Chen, H. Li, et al., Prog. Mater. Sci. 139 (2023) 101182.
doi: 10.1016/j.pmatsci.2023.101182
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 1–16.
D.Y. Oh, Y.J. Nam, K.H. Park, et al., Adv. Energy Mater. 5 (2015) 1500865.
doi: 10.1002/aenm.201500865
T. Ohtomo, A. Hayashi, M. Tatsumisago, et al., J. Power Sources 233 (2013) 231–235.
doi: 10.1016/j.jpowsour.2013.01.090
G. Oh, M. Hirayama, O. Kwon, et al., Chem. Mater. 28 (2016) 2634–2640.
doi: 10.1021/acs.chemmater.5b04940
J. Wu, S. Liu, F. Han, et al., Adv. Mater. 33 (2021) e2000751.
doi: 10.1002/adma.202000751
A. Jain, Shyue Ping Ong, G. Hautier, et al., APL Mater. 1 (2013) 011002.
doi: 10.1063/1.4812323
A. Jain, K.A. Persson, G. Ceder, et al., APL Mater. 4 (2016) 053102.
doi: 10.1063/1.4944683
J. Lopez, D.G. Mackanic, Y. Cui, et al., Nat. Rev. Mater. 4 (2019) 312–330.
doi: 10.1038/s41578-019-0103-6
Y. Wang, W.D. Richards, S.P. Ong, et al., Nat. Mater. 14 (2015) 1026–1031.
doi: 10.1038/nmat4369
M. Yang, Y. Yao, M. Chang, et al., Adv. Energy Mater. 13 (2023) 2300962.
doi: 10.1002/aenm.202300962
F. Mizuno, A. Hayashi, K. Tadanage, et al., Adv. Mater. 17 (2005) 918–921.
doi: 10.1002/adma.200401286
N. Kamaya, K. Homma, Y. Yamakawa, et al., Nat. Mater. 10 (2011) 682–686.
doi: 10.1038/nmat3066
Y. Kato, S. Hori, T. Saito, et al., Nat. Energy 1 (2016) 16030.
doi: 10.1038/nenergy.2016.30
A. Banerjee, X. Wang, C. Fang, et al., Chem. Rev. 120 (2020) 6878–6933.
doi: 10.1021/acs.chemrev.0c00101
E. Umeshbabu, B. Zheng, Y. Yang, Electrochem. Energy Rev. 2 (2019) 199–230.
doi: 10.1007/s41918-019-00029-3
Y. Chu, Y. Shen, F. Guo, et al., Electrochem. Energy Rev. 3 (2019) 187–219.
H. Wan, L. Cai, F. Han, et al., Small 15 (2019) e1905849.
doi: 10.1002/smll.201905849
L. Xu, S. Tang, Y. Cheng, et al., Joule 2 (2018) 1991–2015.
doi: 10.1016/j.joule.2018.07.009
F. Han, Y. Zhu, X. He, et al., Adv. Energy Mater. 6 (2016) 1501590.
doi: 10.1002/aenm.201501590
K. Takada, N. Ohta, L. Zhang, et al., Solid State Ionics 179 (2008) 1333–1337.
doi: 10.1016/j.ssi.2008.02.017
A. Sakuda, A. Hayashi, M. Tatsumisago, Chem. Mater. 22 (2009) 949–956.
Y. Zhu, X. He, Y. Mo, J. Mater. Chem. A 4 (2016) 3253–3266.
doi: 10.1039/C5TA08574H
J. Haruyama, K. Sodeyama, Y. Tateyama, ACS Appl. Mater. Interfaces 9 (2017) 286–292.
doi: 10.1021/acsami.6b08435
K.J. Kim, M. Balaish, M. Wadaguchi, et al., Adv. Energy Mater. 11 (2020) 2002689.
H. Xu, G. Cao, Y. Shen, et al., Energy Environ. Mater. 5 (2022) 852–864.
doi: 10.1002/eem2.12282
Z. Zhang, S. Chen, J. Yang, et al., ACS Appl. Mater. Interfaces 10 (2018) 2556–2565.
doi: 10.1021/acsami.7b16176
X. Rui, D. Ren, X. Liu, et al., Energy Environ. Sci. 16 (2023) 3552–3563.
doi: 10.1039/D3EE00084B
W. Li, Y.G. Cho, W. Yao, et al., J. Power Sources 473 (2020) 228579.
doi: 10.1016/j.jpowsour.2020.228579
N. Tanibata, S. Takimoto, K. Nakano, et al., ACS Mater. Lett. 2 (2020) 880–886.
doi: 10.1021/acsmaterialslett.0c00127
C.W. Wang, F.C. Ren, Y. Zhou, et al., Energy Environ. Sci. 14 (2021) 437–450.
doi: 10.1039/D0EE03212C
N. Wu, P.H. Chien, Y. Qian, et al., Angew. Chem. Int. Ed. 59 (2020) 4131–4137.
doi: 10.1002/anie.201914478
S. Chen, D. Xie, G. Liu, et al., Energy Storage Mater. 14 (2018) 58–74.
doi: 10.1016/j.ensm.2018.02.020
D. Cheng, T.A. Wynn, X. Wang, et al., Joule 4 (2020) 2484–2500.
doi: 10.1016/j.joule.2020.08.013
J. Peng, D. Wu, Z. Jiang, et al., ACS Nano 17 (2023) 12706–12722.
doi: 10.1021/acsnano.3c03532
S. Zhang, J. Ma, S. Dong, et al., Electrochem. Energy Rev. 6 (2023) 4.
doi: 10.1007/s41918-022-00143-9
S. Shi, J. Gao, Y. Liu, et al., Chin. Phys. B 25 (2016) 018212.
doi: 10.1088/1674-1056/25/1/018212
K.B. Hatzell, X.C. Chen, C.L. Cobb, et al., ACS Energy Lett. 5 (2020) 922–934.
doi: 10.1021/acsenergylett.9b02668
S. Lou, F. Zhang, C. Fu, et al., Adv. Mater. 33 (2021) e2000721.
doi: 10.1002/adma.202000721
J. Wu, L. Shen, Z. Zhang, et al., Electrochem. Energy Rev. 4 (2020) 101–135.
G. Xi, M. Xiao, S. Wang, et al., Adv. Funct. Mater. 31 (2020) 2007598.
X. Xu, K.S. Hui, K.N. Hui, et al., Mater. Horiz. 7 (2020) 1246–1278.
doi: 10.1039/C9MH01701A
S. Randau, D.A. Weber, O. Kötz, et al., Nat. Energy 5 (2020) 259–270.
doi: 10.1038/s41560-020-0565-1
Q. He, B. Yu, Z. Li, et al., Energy Environ. Mater. 2 (2019) 264–279.
doi: 10.1002/eem2.12056
A. Urban, D.H. Seo, G. Ceder, NPJ Comput. Mater. 2 (2016) 2057–3960.
Q. Zhao, S. Stalin, C.Z. Zhao, et al., Nat. Rev. Mater. 5 (2020) 229–252.
doi: 10.1038/s41578-019-0165-5
T. Famprikis, P. Canepa, J.A. Dawson, et al., Nat. Mater. 18 (2019) 1278–1291.
doi: 10.1038/s41563-019-0431-3
R. Chen, Q. Li, X. Yu, et al., Chem. Rev. 120 (2020) 6820–6877.
doi: 10.1021/acs.chemrev.9b00268
W. Ji, X. Zhang, D. Zheng, et al., Adv. Funct. Mater. 37 (2022) 2202919.
W. Xie, M. Chang, W. Fan, et al., Mater. Chem. Front. 7 (2023) 2844–2850.
doi: 10.1039/D3QM00173C
Y. Wang, Z. Wang, D. Wu, et al., eScience 2 (2022) 537–545.
doi: 10.1016/j.esci.2022.06.001
P. Lu, L. Liu, S. Wang, et al., Adv. Mater. 33 (2021) e2100921.
doi: 10.1002/adma.202100921
J. Peng, D. Wu, H. Li, et al., Battery Energy 2 (2023) 20220059.
doi: 10.1002/bte2.20220059
Y. Jin, Q. He, G. Liu, et al., Adv. Mater. 35 (2023) e2211047.
doi: 10.1002/adma.202211047
A. Pradel, M. Ribes, Solid State lonics 18 (1986) 351–355.
A. Hayashi, S. Hama, H. Morimoto, et al., J. Am. Ceram. Soc. 84 (2001) 477–479.
doi: 10.1111/j.1151-2916.2001.tb00685.x
R.C. Xu, X.H. Xia, S.H. Li, et al., J. Mater. Chem. A 5 (2017) 6310–6317.
doi: 10.1039/C7TA01147D
L. Zhou, M.K. Tufail, N. Ahmad, et al., ACS Appl. Mater. Interfaces 13 (2021) 28270–28280.
doi: 10.1021/acsami.1c06328
T. Kaib, S. Haddadpour, M. Kapitein, et al., Chem. Mater. 24 (2012) 2211–2219.
doi: 10.1021/cm3011315
K.H. Park, D.Y. Oh, Y.E. Choi, et al., Adv. Mater. 28 (2016) 1874–1883.
doi: 10.1002/adma.201505008
H. Kwak, K.H. Park, D. Han, et al., J. Power Sources 446 (2020) 227338.
doi: 10.1016/j.jpowsour.2019.227338
R. Iwasaki, S. Hori, R. Kanno, et al., Chem. Mater. 31 (2019) 3694–3699.
doi: 10.1021/acs.chemmater.9b00420
P. Bron, S. Johansson, K. Zick, et al., J. Am. Chem. Soc. 135 (2013) 15694–15697.
doi: 10.1021/ja407393y
J.E. Lee, K.H. Park, J.C. Kim, et al., Adv. Mater. 34 (2022) e2200083.
doi: 10.1002/adma.202200083
K.H. Kim, S.W. Martin, Chem. Mater. 31 (2019) 3984–3991.
doi: 10.1021/acs.chemmater.9b00505
H.J. Deiseroth, J. Maier, K. Weichert, et al., Z. Anorg. Allg. Chem. 637 (2011) 1287–1294.
doi: 10.1002/zaac.201100158
C. Yu, S. Ganapathy, J. Hageman, et al., ACS Appl. Mater. Interfaces 10 (2018) 33296–33306.
doi: 10.1021/acsami.8b07476
P. Adeli, J.D. Bazak, K.H. Park, et al., Angew. Chem. Int. Ed. 58 (2019) 8681–8686.
doi: 10.1002/anie.201814222
Y. Lee, J. Jeong, H.D. Lim, et al., ACS Sustain. Chem. Engin. 9 (2020) 120–128.
J.M. Tarascon, M. Armand, Nature 414 (2001) 359–367.
doi: 10.1038/35104644
R. Koerver, W. Zhang, L. de Biasi, et al., Energy Environ. Sci. 11 (2018) 2142–2158.
doi: 10.1039/C8EE00907D
T. Shi, Y.Q. Zhang, Q. Tu, et al., J. Mater. Chem. A 8 (2020) 17399–17404.
doi: 10.1039/D0TA06985J
R. Koerver, I. Dursun, T. Leichtweiß, et al., Chem. Mater. 29 (2017) 5574–5582.
doi: 10.1021/acs.chemmater.7b00931
S.G. Ling, J. Gao, R.J. Xiao, et al., Chin. Phys. B 25 (2016) 018208.
doi: 10.1088/1674-1056/25/1/018208
W. Schnick, J. Luecke, Solid State lonics 38 (1990) 271–273.
doi: 10.1016/0167-2738(90)90432-Q
B.A. Boukamp, R.A. Huggins, Mat. Res. Bull. 13 (1978) 23–32.
doi: 10.1016/0025-5408(78)90023-5
X. He, Y. Zhu, Y. Mo, Nat. Commun. 8 (2017) 15893.
doi: 10.1038/ncomms15893
R. Jalem, Y. Yamamoto, H. Shiiba, et al., Chem. Mater. 25 (2013) 425–430.
doi: 10.1021/cm303542x
Y. Mo, S.P. Ong, G. Ceder, et al., Chem. Mater. 24 (2011) 15–17.
Y. Zhu, X. He, Y. Mo, et al., J. Mater. Chem. A 4 (2016) 3253–3266.
doi: 10.1039/C5TA08574H
A.V.D. Walle, M. Asta, G. Ceder, Calphad 26 (2002) 539–553.
doi: 10.1016/S0364-5916(02)80006-2
A.V.D. Walle, G. Ceder, J. Phase Equilibria 23 (2002) 348–359.
doi: 10.1361/105497102770331596
W.D. Richards, L.J. Miara, Y. Wang, et al., Chem. Mater. 28 (2015) 266–273.
Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 7 (2015) 23685–23693.
doi: 10.1021/acsami.5b07517
H. Xu, Y. Yu, Z. Wang, et al., Energy Environ. Mater. 2 (2019) 234–250.
doi: 10.1002/eem2.12053
H. Xu, W. Xiao, Z. Wang, et al., J. Energy Chem. 59 (2021) 229–241.
doi: 10.1016/j.jechem.2020.11.008
W. Zhang, D.A. Weber, H. Weigand, et al., ACS Appl. Mater. Interfaces 9 (2017) 17835–17845.
doi: 10.1021/acsami.7b01137
B.N.J. Persson, Surf. Sci. Rep. 61 (2006) 201–227.
doi: 10.1016/j.surfrep.2006.04.001
H.K. Tian, Y. Qi, J. Electrochem. Soc. 164 (2017) E3512–E3521.
doi: 10.1149/2.0481711jes
M. Yamamoto, M. Takahashi, Y. Terauchi, JCS Japan 125 (2017) 391–395.
S. Choi, M. Jeon, J. Ahn, et al., ACS Appl. Mater. Interfaces 10 (2018) 23740–23747.
doi: 10.1021/acsami.8b04204
J. Haruyama, K. Sodeyama, L. Han, et al., Chem. Mater. 26 (2014) 4248–4255.
doi: 10.1021/cm5016959
A.M. Nolan, Y. Liu, Y. Mo, ACS Energy Lett. 4 (2019) 2444–2451.
doi: 10.1021/acsenergylett.9b01703
W.S.K. Bong, A. Shiota, T. Miwa, et al., J. Power Sources 577 (2023) 233259.
doi: 10.1016/j.jpowsour.2023.233259
L. Peng, H. Ren, J. Zhang, et al., Energy Storage Mater. 43 (2021) 53–61.
doi: 10.1016/j.ensm.2021.08.028
X. Li, L. Jin, D. Song, et al., J. Energy Chem. 40 (2020) 39–45.
doi: 10.1016/j.jechem.2019.02.006
F. Ren, Z. Liang, W. Zhao, et al., Energy Environ. Sci. 16 (2023) 2579–2590.
doi: 10.1039/D3EE00870C
Y. Xiao, L.J. Miara, Y. Wang, et al., Joule 3 (2019) 1252–1275.
doi: 10.1016/j.joule.2019.02.006
D. Cao, Y. Zhang, A.M. Nolan, et al., Nano Lett. 20 (2020) 1483–1490.
doi: 10.1021/acs.nanolett.9b02678
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313