Citation: Weiwei He, Hongbo Zhang, Xudong Lin, Lili Zhu, Tingting Zheng, Hao Pei, Yang Tian, Min Zhang, Guoyue Shi, Lei Wu, Jianlong Zhao, Gulinuer Wumaier, Shengqing Li, Yufang Xu, Honglin Li, Xuhong Qian. Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology[J]. Chinese Chemical Letters, ;2024, 35(5): 109091. doi: 10.1016/j.cclet.2023.109091 shu

Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology

    * Corresponding authors at: Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
    E-mail addresses: hlli@ecust.edu.cn (H. Li), xhqian@ecnu.edu.cn (X. Qian).
    1 These authors contributed equally to this work.
  • Received Date: 10 August 2023
    Revised Date: 8 September 2023
    Accepted Date: 11 September 2023
    Available Online: 21 September 2023

Figures(4)

  • This review explores the concept of life-on-a-chip, which involves the creation of miniaturized biological systems, such as organs, tissues, and model organisms, on microscale platforms called microfluidic chips. These chips consist of intricately etched channels, wells, and chambers that enable precise control and observation of fluids, cells, and biochemical reactions, facilitating the simulation of various aspects of human or animal physiology and the study of responses to different stimuli, drugs, or disease conditions. The review highlights the application of a novel technology, "Beyond Limit Manufacturing" (BLM), in the development of sophisticated three-dimensional cell models and model organism microchips. Model-organism-on-a-chip and organ-on-a-chip (OoC) are among the thriving developments in the field of microfluidics, allowing for the reconstruction of living microenvironments and implementation of multiple stimuli. The review discusses the latest advancements in life-on-a-chip technology using BLM and outlines potential future research directions, emphasizing the significant role of these chips in studying complex biological processes in a controlled and scalable manner.
  • 加载中
    1. [1]

      G. Fang, Y.C. Chen, H. Lu, et al., Adv. Funct. Mater. 33 (2023) 2215043.  doi: 10.1002/adfm.202215043

    2. [2]

      S.E. Park, A. Georgescu, D. Huh, Science 364 (2019) 960–965.  doi: 10.1126/science.aaw7894

    3. [3]

      Y. Cheng, W. Zhu, X. Qian, Beyond Limits manufacturing: Mass customization of Factory-on-a-Chip for Flow chemistry, in 70 Years of excellence: ECNU's Ongoing Commitment to cutting-edge, Cross-Disciplinary Research, Science/AAAS, Washington DC, 2021, pp. 17–19. https://www.science.org/content/resource/70-years-excellence-ecnu-ongoing-commitment-cutting-edge-cross-disciplinaryresearch.

    4. [4]

      J. Xu, X. Li, Y. Zhong, et al., Adv. Mater. Technol. 3 (12) (2018) 1800372.  doi: 10.1002/admt.201800372

    5. [5]

      R. Hu, X. Li, J. Xu, et al., Anal. Chem. 95 (2023) 10422–10429.  doi: 10.1021/acs.analchem.3c01779

    6. [6]

      X. Li, J. Xu, Z. Lin, et al., Appl. Surf. Sci. 485 (2019) 188–193.  doi: 10.1016/j.apsusc.2019.04.211

    7. [7]

      M. Tang, X. Duan, A. Yang, et al., Adv. Sci. 9 (2022) 2104449.  doi: 10.1002/advs.202104449

    8. [8]

      S.K.H. Sy, D.C.W. Chan, R.C.H. Chan, et al., Nat. Commun. 14 (2023) 227.  doi: 10.1038/s41467-023-35836-2

    9. [9]

      K. Mattern, J.W. von Trotha, P. Erfle, et al., Commun. Biol. 3 (1) (2020) 311.  doi: 10.1038/s42003-020-1029-7

    10. [10]

      S. Mondal, E. Hegarty, C. Martin, et al., Nat. Commun. 7 (2016) 13023.  doi: 10.1038/ncomms13023

    11. [11]

      G. Aubry, M. Milisavljevic, H. Lu, Small 18 (17) (2022) e2200319.  doi: 10.1002/smll.202200319

    12. [12]

      J. Wan, H. Lu, Lab Chip 20 (24) (2020) 4528–4538.  doi: 10.1039/D0LC00881H

    13. [13]

      A. Yang, X. Lin, Z. Liu, et al., Nano Lett. 23 (4) (2023) 1280–1288.  doi: 10.1021/acs.nanolett.2c04456

    14. [14]

      H.B. Zhang, L. Ma, R.X. Yin, et al., Patent, CN202110488516, 2021.

    15. [15]

      H.B. Zhang, K. Song, T.L. Song, et al., Patent, ZL202010439009.8, 2020.

    16. [16]

      M. Qiao, S. Wang, W. Fan, et al., Mater. Express 11 (2021) 445–451.

    17. [17]

      W. Sun, Z. Liu, J. Xu, et al., Chin. Chem. Lett. 34 (5) (2023) 107819.  doi: 10.1016/j.cclet.2022.107819

    18. [18]

      A. Herland, A.D. Van Der Meer, et al., PLoS One 11 (3) (2016) e0150360.  doi: 10.1371/journal.pone.0150360

    19. [19]

      P.H. Yang, F.Y. Zheng, Q.S. Li, et al., Chin. J. Anal. Chem. 50 (2) (2022) 97–101.  doi: 10.1016/j.cjac.2021.11.003

    20. [20]

      D. Caballero, S.M. Blackburn, M. de Pablo, et al., Lab Chip 17 (22) (2017) 3760–3771.  doi: 10.1039/C7LC00574A

    21. [21]

      D.T.T. Phan, X. Wang, B.M. Craver, et al., Lab Chip 17 (2017) 511–520.  doi: 10.1039/C6LC01422D

    22. [22]

      Z. Gu, M. Xie, S. Lv, et al., Int. J. Bioprinting 8 (2022) 619.

    23. [23]

      J. Zhao, X.Y. Liu, Y. Zhou, et al., Chin. Chem. Lett. 34 (2023) 107895.  doi: 10.1016/j.cclet.2022.107895

    24. [24]

      Y.S. Zhang, J. Aleman, S.R. Shin, et al., Proc. Natl. Acad. Sci. U. S. A. 114 (12) (2017) E2293–E2302.  doi: 10.1073/pnas.1612906114

    25. [25]

      X. Ding, Y. Zhang, Y. Zhang, et al., ACS Nano 16 (10) (2022) 17376–17388.  doi: 10.1021/acsnano.2c08266

    26. [26]

      W.L. Thompson, T. Takebe, Methods Cell Bio. 159 (2020) 47–68.

  • 加载中
    1. [1]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    2. [2]

      Meihui LiuXinyuan ZhouXiao LiZhenjie XueTie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875

    3. [3]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    4. [4]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    5. [5]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

Metrics
  • PDF Downloads(1)
  • Abstract views(113)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return