Citation: Yanbing Shen, Yuan Yuan, Yaxin Wang, Xiaonan Ma, Wensheng Yang, Yulan Chen. Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties[J]. Chinese Chemical Letters, ;2024, 35(5): 108949. doi: 10.1016/j.cclet.2023.108949 shu

Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties

    * Corresponding authors.
    E-mail addresses: wsyang@tju.edu.cn (W. Yang), yulanchen@jlu.edu.cn (Y. Chen).
  • Received Date: 6 June 2023
    Revised Date: 17 August 2023
    Accepted Date: 18 August 2023
    Available Online: 19 August 2023

Figures(6)

  • Mechanochromophores based on bichromic molecular switches, such as bis-naphthopyanes, allow multimodal mechanochromic behavior beyond the typical binary response from single chromophores, which is important for distinguishing between multiple stress states through discrete changes in color. Spontaneously generated persistent and distinguishable multi-colors from activated bis-naphthopyanes remain challenging. And the versatility of bis-mechanophore design for advanced optical molecular systems and the fundamental insights into the corresponding mechano-reactivity are not enough. Here, we identify a dihydroanthracene bridged bis-naphthopyrans as a multimodal mechanochromophore in polymers. Bridging two pyrans with the sterically constrained dihydroanthracene is helpful to control the steric effect for the favorable formation of a distinctly appreciable bis-merocyanine (bis-MC) product. By varying the length of the polymer chains, the force delivered to the mechanophore is modulated, resulting in a gradient change in the relative distribution of two distinctly colored MC products and a multicolor mechanochromism. Mechanical activation of this bis-naphthopyanes proceeds via a mechanistically distinct pathway compared to the photochemical process. In addition, the bulk films can also achieve pronounced color changes when subjected to mechanical force. This study thus further expands the molecular diversity of mechanochromophores and tune the multimodal switch properties of bis-naphthopyrans based polymers.
  • 加载中
    1. [1]

      M.A. Ghanem, A. Basu, R. Behrou, et al., Nat. Rev. Mater. 6 (2021) 84–98.

    2. [2]

      M. Xuan, C. Schumacher, C. Bolm, et al., Adv. Sci. 9 (2022) e2105497.  doi: 10.1002/advs.202105497

    3. [3]

      G. De Bo, Chem. Sci. 9 (2018) 15–21.  doi: 10.1039/C7SC04200K

    4. [4]

      R.T. O'Neill, R. Boulatov, Nat. Rev. Chem. 5 (2021) 148–167.  doi: 10.1038/s41570-020-00249-y

    5. [5]

      Y. Chen, G. Mellot, D. van Luijk, et al., Chem. Soc. Rev. 50 (2021) 4100–4140.  doi: 10.1039/D0CS00940G

    6. [6]

      H. Shen, M.B. Larsen, A.G. Roessler, et al., Angew. Chem. Int. Ed. 60 (2021) 13559–13563.  doi: 10.1002/anie.202100576

    7. [7]

      J. Li, C. Nagamani, J.S. Moore, Acc. Chem. Res. 48 (2015) 2181–2190.  doi: 10.1021/acs.accounts.5b00184

    8. [8]

      J. Noh, G.I. Peterson, T.L. Choi, Angew. Chem. Int. Ed. 60 (2021) 18651–18659.  doi: 10.1002/anie.202104447

    9. [9]

      T. Matsuda, R. Kawakami1, R. Namba, et al., Science 363 (2019) 504–508.  doi: 10.1126/science.aau9533

    10. [10]

      S. He, M. Stratigaki, S. Centeno, et al., Chem. Eur. J. 27 (2021) 15889–15897.  doi: 10.1002/chem.202102938

    11. [11]

      Z. Zhang, W. You, P. Li, et al., J. Am. Chem. Soc. 145 (2023) 567–578.  doi: 10.1021/jacs.2c11105

    12. [12]

      Z. Chen, X. Zhu, J. Yang, et al., Nat. Chem. 12 (2020) 302–309.  doi: 10.1038/s41557-019-0396-5

    13. [13]

      X. Li, F. Yang, Y. Li, et al., CCS Chem. 5 (2023) 925–933.  doi: 10.31635/ccschem.022.202201874

    14. [14]

      Y. Sagara, M. Karman, E. Verde-Sesto, et al., J. Am. Chem. Soc. 140 (2018) 1584–1587.  doi: 10.1021/jacs.7b12405

    15. [15]

      M.E. McFadden, S.K. Osler, Y. Sun, et al., J. Am. Chem. Soc. 144 (2022) 22391–22396.  doi: 10.1021/jacs.2c08817

    16. [16]

      T. Kosuge, X. Zhu, V.M. Lau, et al., J. Am. Chem. Soc. 141 (2019) 1898–1902.  doi: 10.1021/jacs.8b13310

    17. [17]

      J.N.M. Boots, D.W. te Brake, J.M. Clough, et al., Phys. Rev. Mater. 6 (2022) 025605.  doi: 10.1103/PhysRevMaterials.6.025605

    18. [18]

      Y. Zhou, S. Huo, M. Loznik, et al., Angew. Chem. Int. Ed. 60 (2021) 1493–1497.  doi: 10.1002/anie.202010324

    19. [19]

      J. Zhang, S. Liu, Y. Yuan, et al., Chin. J. Polym. Sci. 41 (2023) 1162–1168.  doi: 10.1007/s10118-023-3013-4

    20. [20]

      T. Watabe, H. Otsuka, Angew. Chem. Int. Ed. 62 (2022) e202216469.

    21. [21]

      Y. Zheng, L. Zuo, L. Zhang, et al., Chin. Chem. Lett. 33 (2022) 4536–4540.  doi: 10.1016/j.cclet.2022.01.059

    22. [22]

      D.A. Davis, A. Hamilton, J. Yang, et al., Nature 459 (2009) 68–72.  doi: 10.1038/nature07970

    23. [23]

      M. Li, Q. Zhang, Y.N. Zhou, et al., Prog. Polym. Sci. 79 (2018) 26–39.  doi: 10.1016/j.progpolymsci.2017.11.001

    24. [24]

      J. Han, Y. Yuan, Y. Chen, Chem. Res. Chin. Univ. 39 (2023) 757–762.  doi: 10.1007/s40242-023-3118-x

    25. [25]

      Y. Lin, M.H. Barbee, C.C. Chang, et al., J. Am. Chem. Soc. 140 (2018) 15969–15975.  doi: 10.1021/jacs.8b10376

    26. [26]

      H. Zhang, Y. Chen, Y. Lin, et al., Macromolecules 47 (2014) 6783–6790.  doi: 10.1021/ma500760p

    27. [27]

      J.M. Clough, J. vander Gucht, T.E. Kodger, et al., Adv. Funct. Mater. 30 (2020) 2002716.  doi: 10.1002/adfm.202002716

    28. [28]

      Y. Zhang, E. Lund, G.R. Gossweiler, et al., Macromol. Rapid. Commun. 42 (2021) e2000359.  doi: 10.1002/marc.202000359

    29. [29]

      T. Wang, N. Zhang, J. Dai, et al., ACS Appl. Mater. Inter. 9 (2017) 11874–11881.  doi: 10.1021/acsami.7b00176

    30. [30]

      Z. Wang, Z. Ma, Y. Wang, et al., Adv. Mater. 27 (2015) 6469–6474.  doi: 10.1002/adma.201503424

    31. [31]

      H. Zhang, C.E. Diesendruck, Angew. Chem. Int. Ed. 61 (2022) e202115325.  doi: 10.1002/anie.202115325

    32. [32]

      M. Wu, Z. Guo, W. He, et al., Chem. Sci. 12 (2020) 1245–1250.

    33. [33]

      M. Wu, Y. Li, W. Yuan, et al., J. Am. Chem. Soc. 144 (2022) 17120–17128.  doi: 10.1021/jacs.2c07015

    34. [34]

      W. He, Y. Yuan, M. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202218785.  doi: 10.1002/anie.202218785

    35. [35]

      H. Qian, N.S. Purwanto, D.G. Ivanoff, et al., Chem 7 (2021) 1080–1091.  doi: 10.1016/j.chempr.2021.02.014

    36. [36]

      Q. Qi, G. Sekhon, R. Chandradat, et al., J. Am. Chem. Soc. 143 (2021) 17337–17343.  doi: 10.1021/jacs.1c05923

    37. [37]

      M.E. McFadden, M.J. Robb, J. Am. Chem. Soc. 143 (2021) 7925–7929.  doi: 10.1021/jacs.1c03865

    38. [38]

      M.E. McFadden, M.J. Robb, J. Am. Chem. Soc. 141 (2019) 11388–11392.  doi: 10.1021/jacs.9b05280

    39. [39]

      S.K. Osler, M.E. McFadden, M.J. Robb, J. Polym. Sci. 59 (2021) 2537–2544.  doi: 10.1002/pol.20210417

    40. [40]

      M. Wang, B. Li, Y. Wei, et al., Chin. Chem. Lett. 35 (2024) 108491.  doi: 10.1016/j.cclet.2023.108491

    41. [41]

      J. Cao, J. Wang, Y. Chen, Acta Polymerica Sin. 54 (2023) 1263–1271.

    42. [42]

      L. Yang, Y. Li, H. Zhang, et al., Chin. Chem. Lett. 34 (2023) 108108.  doi: 10.1016/j.cclet.2022.108108

    43. [43]

      X. Xiao, W. Zheng, Y. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107457.  doi: 10.1016/j.cclet.2022.04.055

    44. [44]

      Y. Inagaki, K. Mutoh, J. Abe, Photochem. Photobiol. Sci. 17 (2018) 946–953.  doi: 10.1039/c8pp00205c

    45. [45]

      A. Mukhopadhyay, J.N. Moorthy, J. Photoch. Photobio. C: Photoch. Rev. 29 (2016) 73–106.  doi: 10.1016/j.jphotochemrev.2016.11.002

    46. [46]

      M.J. Robb, T.A. Kim, A.J. Halmes, et al., J. Am. Chem. Soc. 138 (2016) 12328–12331.  doi: 10.1021/jacs.6b07610

    47. [47]

      S. Li, T. Yan, Q.W.Z. Xu, J. Han, Chin. Chem. Lett. 33 (2022) 239–242.  doi: 10.1016/j.cclet.2021.07.023

    48. [48]

      B.A. Versaw, M.E. McFadden, C.C. Husic, et al., Chem. Sci. 11 (2020) 4525–4530.  doi: 10.1039/D0SC01359E

    49. [49]

      I.M. Klein, C.C. Husic, D.P. Kovacs, et al., J. Am. Chem. Soc. 142 (2020) 16364–16381.  doi: 10.1021/jacs.0c06868

  • 加载中
    1. [1]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    2. [2]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    3. [3]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    4. [4]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

Metrics
  • PDF Downloads(1)
  • Abstract views(111)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return