Citation: Dan Ouyang, Huan Huang, Yanting He, Jiajing Chen, Jiali Lin, Zhuling Chen, Zongwei Cai, Zian Lin. Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides[J]. Chinese Chemical Letters, ;2024, 35(5): 108885. doi: 10.1016/j.cclet.2023.108885 shu

Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides

    * Corresponding author.
    E-mail address: zianlin@fzu.edu.cn (Z. Lin).
    1 These authors contributed equally to this work.
  • Received Date: 28 February 2023
    Revised Date: 31 July 2023
    Accepted Date: 1 August 2023
    Available Online: 4 August 2023

Figures(7)

  • Saccharides are a sort of ubiquitous and vital molecules within the whole life. However, the application of saccharides analysis with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is restricted by their low ionization efficiency and the instability of the sialic acid fraction. Derivatization strategy based on nonreductive amination provides a good solution, however, this is often time consuming and may result in sample loss due to removal of excessive derivatization reagents. Herein, hydralazine (HZN) was utilized as a reactive matrix for labeling reducing saccharides directly on MALDI target which eliminated tedious sample preparation and avoided sample loss. After optimization, effective and reproducible on-MALDI-target derivatization of neutral and acidic saccharides was achieved in both positive and negative modes. Compared with 2,5-dihydroxybenzoic acid (DHB) and 9-aminoacridine (9-AA), HZN improved the detection sensitivity of reducing saccharides and provided more abundant fragment ions in MS/MS analysis. Moreover, 26 kinds of neutral glycans and 5 kinds of sialic glycans were identified from ovalbumin (OVA) and bovine fetuin, respectively. Combined with the statistical models, this strategy could be used to distinguish and predict samples of 6 brands of beer, and discriminate 2 kinds of beer fermentation modes. In addition, HZN was applied for quantitative analysis of glucose in urine samples, and the obtained urine glucose concentrations of diabetic patients were consistent with the clinical test results, showing the potential of qualitative and quantitative analysis of reducing saccharides in complex samples.
  • 加载中
    1. [1]

      J. Wang, J. Zhao, S. Nie, et al., Food Hydrocolloids 124 (2022) 107237.  doi: 10.1016/j.foodhyd.2021.107237

    2. [2]

      M.W. Patabandige, L.D. Pfeifer, H.T. Nguyen, et al., Mass Spectrom. Rev. 41 (2022) 901–921.  doi: 10.1002/mas.21688

    3. [3]

      K. Ohtsubo, J. Marth, Cell 126 (2001) 855–867.

    4. [4]

      X.L. Hronowski, Y. Wang, Z. Sosic, et al., Anal. Chem. 92 (2020) 10252–10256.  doi: 10.1021/acs.analchem.0c01748

    5. [5]

      D.J. Harvey, Mass Spectrom. Rev. 40 (2021) 408–565.  doi: 10.1002/mas.21651

    6. [6]

      D. Ropartz, P.E. Bodet, C. Przybylski, et al., Commun. Mass Spectrom. 25 (2011) 2059–2070.  doi: 10.1002/rcm.5060

    7. [7]

      H. Zhang, X. Shi, N.Q. Vu, et al., Anal. Chem. 92 (2020) 13361–13368.  doi: 10.1021/acs.analchem.0c02704

    8. [8]

      C.L. Wu, C.C. Wang, Y.H. Lai, et al., Anal. Chem. 85 (2013) 3836–3841.  doi: 10.1021/ac3036469

    9. [9]

      T. Nishikaze, Proc. Jpn. Acad. Ser. B 95 (2019) 523–537.  doi: 10.2183/pjab.95.036

    10. [10]

      L. Yang, Y. Peng, J. Jiao, et al., Anal. Chem. 89 (2017) 7470–7476.  doi: 10.1021/acs.analchem.7b01051

    11. [11]

      L. Wang, L. Yang, Y. Zhang, et al., Anal. Chim. Acta 1104 (2020) 87–94.  doi: 10.1016/j.aca.2020.01.003

    12. [12]

      Y. Cai, J. Jiao, Z. Bin, et al., Chem. Commun. 51 (2015) 772–775.  doi: 10.1039/C4CC08086F

    13. [13]

      S.Y. Yu, S.W. Wu, K.H. Khoo, Glycoconjugate J. 23 (2006) 355–369.  doi: 10.1007/s10719-006-8492-3

    14. [14]

      S.I. Snovida, V.C. Chen, H. Perreault, Anal. Chem. 78 (2006) 8561–8568.  doi: 10.1021/ac061375r

    15. [15]

      T. Nishikaze, Mass Spectrom. 6 (2017) A0060.  doi: 10.5702/massspectrometry.A0060

    16. [16]

      M. Rohmer, B. Meyer, M. Mank, et al., Anal. Chem. 82 (2010) 3719–3726.  doi: 10.1021/ac1001096

    17. [17]

      J. Jiao, Y. Zhang, P. Yang, et al., Analyst 140 (2015) 156–161.  doi: 10.1039/C4AN01659A

    18. [18]

      J. Jiao, L. Yang, Y. Zhang, et al., Analyst 140 (2015) 5475–5480.  doi: 10.1039/C5AN00572H

    19. [19]

      L. Ling, C. Xiao, Y. Ma, et al., Anal. Chem. 91 (2019) 8801–8807.  doi: 10.1021/acs.analchem.9b01434

    20. [20]

      X. Lin, C. Xiao, L. Ling, et al., Talanta 235 (2021) 122792.  doi: 10.1016/j.talanta.2021.122792

    21. [21]

      K. Kaneshiro, Y. Fukuyama, S. Iwamoto, et al., Anal. Chem. 83 (2011) 3663–3667.  doi: 10.1021/ac103203v

    22. [22]

      K. Kaneshiro, M. Watanabe, K. Terasawa, et al., Anal. Chem. 84 (2012) 7146–7151.  doi: 10.1021/ac301484f

    23. [23]

      Y. Fukuyama, N. Funakoshi, K. Takeyama, et al., Anal. Chem. 86 (2014) 1937–1942.  doi: 10.1021/ac4037087

    24. [24]

      K. Jiang, A. Aloor, J. Qu, et al., Anal. Bioanal. Chem. 409 (2017) 421–429.  doi: 10.1007/s00216-016-9690-x

    25. [25]

      W. Tang, A. Gordon, F. Wang, et al., Anal. Chem. 93 (2021) 9083–9093.  doi: 10.1021/acs.analchem.1c00498

    26. [26]

      R. Breslow, E. McNelis, J. Am. Chem. Soc. 81 (1959) 3080–3082.  doi: 10.1021/ja01521a042

    27. [27]

      B. Domon, C.E. Costello, Glycoconjugate J. 5 (1988) 397–409.  doi: 10.1007/BF01049915

    28. [28]

      O. Aizpurua-Olaizola, J. Sastre Toraño, J.M. Falcon-Perez, et al., Trends Analyt. Chem. 100 (2018) 7–14.  doi: 10.1016/j.trac.2017.12.015

    29. [29]

      X. Lin, C. Xiao, L. Ling, L. Guo, X. Guo, Talanta 235 (2021) 122792.  doi: 10.1016/j.talanta.2021.122792

    30. [30]

      L. Ling, S. Yu, C. Ding, Analyst 146 (2021) 6840–6845.  doi: 10.1039/D1AN01452H

    31. [31]

      Y. Cai, Y. Zhang, P. Yang, et al., Analyst 138 (2013) 6270–6276.  doi: 10.1039/c3an01228j

    32. [32]

      X. Yang, J. Gan, H. Yuan, et al., Int. J. Mass Spectrom. 417 (2017) 76–82.  doi: 10.1016/j.ijms.2017.03.001

    33. [33]

      S. Holst, B. Heijs, N. De. Haan, et al., Anal. Chem. 88 (2016) 5904–5913.  doi: 10.1021/acs.analchem.6b00819

    34. [34]

      P. Mauri, M. Minoggio, P. Simonetti, et al., Rapid Commun. Mass Spectrom. 16 (2002) 743–748.  doi: 10.1002/rcm.632

    35. [35]

      O. Šedo, I. Márová, Z. Zdráhal, Food Chem. 135 (2012) 473–478.  doi: 10.1016/j.foodchem.2012.05.021

    36. [36]

      R. Castro, A.B. Díaz, E. Durán-Guerrero, et al., J. Food Compos. Anal. 106 (2022) 104278.  doi: 10.1016/j.jfca.2021.104278

  • 加载中
    1. [1]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    2. [2]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    3. [3]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    4. [4]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    5. [5]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    6. [6]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    7. [7]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    8. [8]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

Metrics
  • PDF Downloads(1)
  • Abstract views(130)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return