Oxide-supported metal catalysts for anaerobic NAD+ regeneration with concurrent hydrogen production
-
* Corresponding author.
E-mail address: xiaodong.wang@lancaster.ac.uk (X. Wang).
Citation: Jianwei Li, Joseph W.H. Burnett, Claudia Martinez Macias, Russell F. Howe, Xiaodong Wang. Oxide-supported metal catalysts for anaerobic NAD+ regeneration with concurrent hydrogen production[J]. Chinese Chemical Letters, ;2024, 35(2): 108737. doi: 10.1016/j.cclet.2023.108737
X. Tan, A.J. Chen, B. Wu, et al., Chin. Chem. Lett. 29 (2018) 417–422.
doi: 10.1016/j.cclet.2017.08.040
X. Duan, J. Gao, Y.J. Zhou, Chin. Chem. Lett. 29 (2018) 681–686.
doi: 10.1016/j.cclet.2017.11.015
H.S. Zurier, J.M. Goddard, Curr. Opin. Food Sci. 37 (2021) 37–44.
doi: 10.1016/j.cofs.2020.09.001
S.K. Wu, R. Snajdrova, J.C. Moore, et al., Angew. Chem. Int. Ed. 60 (2021) 88–119.
doi: 10.1002/anie.202006648
Z.L. Wang, B.S. Sekar, Z. Li, Bioresour. Technol. 323 (2021) 124551.
doi: 10.1016/j.biortech.2020.124551
Y.S. Lee, K. Lim, S.D. Minteer, Annual Rev. Phys. Chem. 72 (2021) 467–488.
doi: 10.1146/annurev-physchem-090519-050109
B. Wiltschi, T. Cernava, A. Dennig, et al., Biotechnol. Adv. 40 (2020) 107520.
doi: 10.1016/j.biotechadv.2020.107520
J. Li, Y. Tian, Y. Zhou, et al., Trans. Tianjin Univ. 26 (2020) 237–247.
doi: 10.1007/s12209-020-00257-5
K. Faber, Biocatalytic applications, in: K. Faber (Ed. ), Biotransformations in Organic Chemistry: A Textbook, Springer International Publishing, Cham, 2018, pp. 31–313.
L.S. Vidal, C.L. Kelly, P.M. Mordaka, et al., Biochim. Et Biophys. Acta Proteins Proteom. 1866 (2018) 327–347.
doi: 10.1016/j.bbapap.2017.11.005
Y.G. Zheng, H.H. Yin, D.F. Yu, et al., Appl. Microbiol. Biotechnol. 101 (2017) 987–1001.
doi: 10.1007/s00253-016-8083-6
G. Rehn, A.T. Pedersen, J.M. Woodley, J. Mol. Catal. B: Enzym. 134 (2016) 331–339.
doi: 10.1016/j.molcatb.2016.09.016
M.Q. Xu, F.L. Li, W.Q. Yu, et al., Int. J. Biol. Macromol. 144 (2020) 1013–1021.
doi: 10.1016/j.ijbiomac.2019.09.178
H. Gao, J. Li, D. Sivakumar, et al., Int. J. Biol. Macromol. 123 (2019) 629–636.
doi: 10.1016/j.ijbiomac.2018.11.096
F.L. Li, Y. Shi, J.X. Zhang, et al., Int. J. Biol. Macromol. 113 (2018) 1073–1079.
doi: 10.1016/j.ijbiomac.2018.03.016
C. Nowak, B. Beer, A. Pick, et al., Front. Microbiol. 6 (2015) 957.
T. Himiyama, M. Waki, Y. Maegawa, et al., Angew. Chem. Int. Ed. 58 (2019) 9150–9154.
doi: 10.1002/anie.201904116
C.J. Zhu, Q. Li, L.L. Pu, et al., ACS Catal. 6 (2016) 4989–4994.
doi: 10.1021/acscatal.6b01261
R.A. Rodríguez-Hinestroza, C. López, J. López-Santín, et al., Chem. Eng. Sci. 158 (2017) 196–207.
doi: 10.1016/j.ces.2016.10.010
S. Kochius, J.B. Park, C. Ley, et al., J. Mol. Catal. B: Enzym. 103 (2014) 94–99.
doi: 10.1016/j.molcatb.2013.07.006
S. Kochius, A.O. Magnusson, F. Hollmann, et al., Appl. Microbiol. Biotechnol. 93 (2012) 2251–2264.
doi: 10.1007/s00253-012-3900-z
B.C. Ma, L. Caire da Silva, S.M. Jo, et al., ChemBioChem 20 (2019) 2593–2596.
doi: 10.1002/cbic.201900093
M. Rauch, S. Schmidt, I.W. Arends, et al., Green Chem. 19 (2017) 376–379.
doi: 10.1039/C6GC02008A
S. Kochius, Y. Ni, S. Kara, et al., ChemPlusChem 79 (2014) 1554–1557.
doi: 10.1002/cplu.201402152
S. Gargiulo, I.W.C.E. Arends, F. Hollmann, ChemCatChem 3 (2011) 338–342.
doi: 10.1002/cctc.201000317
V. Uppada, S. Bhaduri, S.B. Noronha, Curr. Sci. (2014) 946–957.
H. Wu, C. Tian, X. Song, et al., Green Chem. 15 (2013) 1773–1789.
doi: 10.1039/c3gc37129h
W. Liu, P. Wang, Biotechnol. Adv. 25 (2007) 369–384.
doi: 10.1016/j.biotechadv.2007.03.002
S. Wang, R. Cazelles, W.C. Liao, et al., Nano Lett. 17 (2017) 2043–2048.
doi: 10.1021/acs.nanolett.7b00093
J. -i. Nishigaki, T. Ishida, T. Honma, et al., ACS Sustain. Chem. Eng. 8 (2020) 10413–10422.
doi: 10.1021/acssuschemeng.0c01893
H. Song, C. Ma, L. Wang, et al., Nanoscale 12 (2020) 19284–19292.
doi: 10.1039/D0NR04060F
J.W.H. Burnett, H. Chen, J. Li, et al., ACS Appl. Mater. Interfaces 14 (2022) 20943–20952.
doi: 10.1021/acsami.2c01743
K. Ganesh, J.B. Joshi, S.B. Sawant, Biochem. Eng. J. 4 (2000) 137–141.
doi: 10.1016/S1369-703X(99)00045-5
M. Mohanty, R.S. Ghadge, N.S. Patil, et al., Chem. Eng. Sci. 56 (2001) 3401–3408.
doi: 10.1016/S0009-2509(01)00020-3
R.S. Ghadge, S.B. Sawant, J.B. Joshi, Chem. Eng. Sci. 58 (2003) 5125–5134.
doi: 10.1016/j.ces.2003.08.008
S. Bhagia, C.E. Wyman, R. Kumar, Biotech. Biofuels 12 (2019) 1–15.
doi: 10.1186/s13068-018-1346-y
M.D. Gomes, B.R. Bommarius, S.R. Anderson, et al., Adv. Synth. Catal. 361 (2019) 2574–2581.
doi: 10.1002/adsc.201900213
M.D. Gomes, R.P. Moiseyenko, A. Baum, et al., Biotechnol. Prog. 35 (2019) e2878.
doi: 10.1002/btpr.2878
J.S. Rowbotham, H.A. Reeve, K.A. Vincent, ACS Catal. 11 (2021) 2596–2604.
doi: 10.1021/acscatal.0c03437
X. Zhao, S.E. Cleary, C. Zor, et al., Chem. Sci. 12 (2021) 8105–8114.
doi: 10.1039/D1SC00295C
T. Saba, J.W.H. Burnett, J. Li, et al., Chem. Commun. 56 (2020) 1231–1234.
doi: 10.1039/C9CC07805C
S. Johnson, P.T. Tuazon, Biochemistry 16 (1977) 1175–1183.
doi: 10.1021/bi00625a023
H.K. Chenault, G.M. Whitesides, Appl. Biochem. Biotechnol. 14 (1987) 147–197.
doi: 10.1007/BF02798431
P.M. Wood, Biochem. J. 253 (1988) 287–289.
doi: 10.1042/bj2530287
J.K. Nørskov, T. Bligaard, A. Logadottir, et al., J. Electrochem. Soc. 152 (2005) J23–J26.
doi: 10.1149/1.1856988
W. Sheng, M. Myint, J.G. Chen, et al., Energy Environ. Sci. 6 (2013) 1509–1512.
doi: 10.1039/c3ee00045a
Q. Lu, G.S. Hutchings, W. Yu, et al., Nat. Commun. 6 (2015) 6567.
doi: 10.1038/ncomms7567
W. Sheng, Z. Zhuang, M. Gao, et al., Nat. Commun. 6 (2015) 5848.
doi: 10.1038/ncomms6848
J. Huang, G. Attard, J. Electroanal. Chem. 896 (2021) 115150.
doi: 10.1016/j.jelechem.2021.115150
B.C. Song, D. Choi, Y. Xin, et al., Angew. Chem. Int. Ed. 60 (2021) 4038–4042.
doi: 10.1002/anie.202012469
Y. Yazawa, N. Takagi, H. Yoshida, et al., Appl. Catal. A: Gen. 233 (2002) 103–112.
doi: 10.1016/S0926-860X(02)00130-8
Z. Sun, Y. Jiang, W. Wang, et al., ChemCatChem 12 (2020) 2189–2193.
doi: 10.1002/cctc.201902370
B.K. Martini, G. Maia, Electrochim. Acta 391 (2021) 138907.
doi: 10.1016/j.electacta.2021.138907
Y. Cao, D. Wang, Y. Lin, et al., ACS Appl. Energy Mater. 1 (2018) 6082–6088.
doi: 10.1021/acsaem.8b01143
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
Ping Lu , Baoyin Du , Ke Liu , Ze Luo , Abiduweili Sikandaier , Lipeng Diao , Jin Sun , Luhua Jiang , Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125