ASb(SO4)2 (A = Rb, Cs): Two short-wave UV antimony sulfates exhibiting large birefringence
-
* Corresponding authors.
E-mail addresses: huangl026@sina.com (L. Huang), zough@scu.edu.cn (G. Zou).
Citation:
Yang Lan, Jinxuan Ren, Pu Zhang, Xuehua Dong, Ling Huang, Liling Cao, Daojiang Gao, Guohong Zou. ASb(SO4)2 (A = Rb, Cs): Two short-wave UV antimony sulfates exhibiting large birefringence[J]. Chinese Chemical Letters,
;2024, 35(1): 108652.
doi:
10.1016/j.cclet.2023.108652
D. Cyranoski, Nature 457 (2009) 953–955.
doi: 10.1038/457953a
R.C. Youngquist, J.L. Brooks, H.J. Shaw, Opt. Lett. 8 (1983) 656–658.
doi: 10.1364/OL.8.000656
Y.T. Wan, Y.J. Cui, Y. Yang, et al., Chin. Chem. Lett. 32 (2021) 1511–1514.
doi: 10.1016/j.cclet.2020.10.015
X.H. Dong, L. Huang, H.M. Zeng, et al., Angew. Chem. Int. Ed. 61 (2022) e202116790.
doi: 10.1002/anie.202116790
P.S. Halasyamani, K.R. Poeppelmeier, Chem. Mater. 10 (1998) 2753–2769.
doi: 10.1021/cm980140w
Y. Zhou, Y.Q. Li, Q.R. Ding, et al., Chin. Chem. Lett. 32 (2021) 263–265.
doi: 10.1016/j.cclet.2020.11.014
C. Wu, X.X. Jiang, Z.J. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 14806–14810.
doi: 10.1002/anie.202102992
X.Y. Li, S. Semin, L.A. Estrada, et al., Chin. Chem. Lett. 29 (2018) 297–300.
doi: 10.1016/j.cclet.2017.11.001
T.T. Tran, H.W. Yu, J.M. Rondinelli, et al., Chem. Mater. 28 (2016) 5238–5258.
doi: 10.1021/acs.chemmater.6b02366
K.M. Ok, E.O. Chi, P.S. Halasyamani, Chem. Soc. Rev. 35 (2006) 710–717.
doi: 10.1039/b511119f
G. Ghosh, Opt. Commun. 163 (1999) 95–102.
doi: 10.1016/S0030-4018(99)00091-7
H.T. Luo, T. Tkaczyk, E.L. Dereniak, et al., Opt. Lett. 31 (2006) 616–618.
doi: 10.1364/OL.31.000616
F. Sedlmeir, R. Zeltner, G. Leuchs, et al., Opt. Express 22 (2014) 30934–30942.
doi: 10.1364/OE.22.030934
G.Q. Zhou, J. Xu, X.D. Chen, et al., J. Cryst. Growth 191 (1998) 517–519.
doi: 10.1016/S0022-0248(98)00162-6
W.K. Wang, D.J. Mei, S.G. Wen, et al., Chin. Chem. Lett. 33 (2022) 2301–2315.
doi: 10.1016/j.cclet.2021.11.089
G.H. Zou, L. Huang, N. Ye, et al., J. Am. Chem. Soc. 135 (2013) 18560–18566.
doi: 10.1021/ja408982d
H.W. Yu, N.Z. Koocher, J.M. Rondinelli, et al., Angew. Chem. Int. Ed. 57 (2018) 6100–6103.
doi: 10.1002/anie.201802079
S.M. Liu, L. He, Y.Z. Wang, et al., Chin. Chem. Lett. 33 (2022) 1032–1036.
doi: 10.1016/j.cclet.2021.07.039
J.Y. Guo, A. Tudi, S.J. Han, et al., Angew. Chem. Int. Ed. 60 (2021) 24901–24904.
doi: 10.1002/anie.202111604
J.Y. Guo, A. Tudi, S.J. Han, et al., Angew. Chem. Int. Ed. 60 (2021) 3540–3544.
doi: 10.1002/anie.202014279
Y.L. Li, C.L. Hu, J. Chen, et al., Dalton Trans. 50 (2021) 16139–16146.
doi: 10.1039/D1DT02514G
K.C. Chen, Y. Yang, G. Peng, et al., J. Mater. Chem. C 7 (2019) 9900–9907.
doi: 10.1039/C9TC03105G
G.J. Yi, G.H. Zou, Chin. J. Struct. Chem. 42 (2023) 100020.
doi: 10.1016/j.cjsc.2023.100020
X.H. Dong, L. Huang, C.F. Hu, et al., Angew. Chem. Int. Ed. 58 (2019) 6528–6534.
doi: 10.1002/anie.201900637
Y.L. Deng, L. Huang, X.H. Dong, et al., Angew. Chem. Int. Ed. 59 (2020) 21151–21156.
doi: 10.1002/anie.202009441
Y. Long, X.H. Dong, L. Huang, et al., Mater. Today Phys. 28 (2022) 100876.
doi: 10.1016/j.mtphys.2022.100876
D. Zhang, Q. Wang, T. Zheng, et al., Sci. China. Mater. 65 (2022) 3115–3124.
doi: 10.1007/s40843-022-2088-0
F. Yang, L.J. Huang, X.Y. Zhao, et al., J. Mater. Chem. C 7 (2019) 8131–8138.
doi: 10.1039/C9TC02180A
Y.X. Chen, Z.X. Chen, Y. Zhou, et al., Chem. Eur. J. 27 (2021) 4557–4560.
doi: 10.1002/chem.202004934
Q. Wei, K. Wang, C. He, et al., Inorg. Chem. 60 (2021) 11648–11654.
doi: 10.1021/acs.inorgchem.1c01653
Q. Wei, C. He, K. Wang, et al., Chem. Eur. J. 27 (2021) 5880–5884.
doi: 10.1002/chem.202004859
Y.C. Liu, X.M. Liu, S. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 7793–7796.
doi: 10.1002/anie.202001042
L. Li, Y. Wang, B.H. Lei, et al., J. Am. Chem. Soc. 138 (2016) 9101–9104.
doi: 10.1021/jacs.6b06053
S.G. Zhao, X.Y. Yang, Y. Yang, et al., J. Am. Chem. Soc. 140 (2018) 1592–1595.
doi: 10.1021/jacs.7b12518
P. Yu, L.M. Wu, L.J. Zhou, et al., J. Am. Chem. Soc. 136 (2014) 480–487.
doi: 10.1021/ja411272y
Y.Q. Li, F. Liang, S.G. Zhao, et al., J. Am. Chem. Soc. 141 (2019) 3833–3837.
doi: 10.1021/jacs.9b00138
Z.Y. Bai, L.H. Liu, L.Z. Zhang, et al., Chem. Commun. 55 (2019) 8454–8457.
doi: 10.1039/C9CC04192C
Y.Q. Li, S.G. Zhao, P. Shan, et al., J. Mater. Chem. C 6 (2018) 12240–12244.
doi: 10.1039/C8TC04361B
X. Zhao, D.J. Mei, J.L. Xu, et al., Solid State Sci. 50 (2015) 52–57.
doi: 10.1016/j.solidstatesciences.2015.09.013
W.Q. Jin, W.Y. Zhang, A. Tudi, et al., Adv. Sci. 8 (2021) 2003594.
doi: 10.1002/advs.202003594
J. Lu, J.N. Yue, L. Xiong, et al., J. Am. Chem. Soc. 141 (2019) 8093–8097.
doi: 10.1021/jacs.9b03858
X. Hao, M. Luo, C.S. Lin, et al., Angew. Chem. Int. Ed. 60 (2021) 7621–7625.
doi: 10.1002/anie.202016372
H.T. Tian, N. Ye, M. Luo, Angew. Chem. Int. Ed. 134 (2022) e202200395.
doi: 10.1002/ange.202200395
H.T. Qiu, F.M. Li, C.C. Jin, et al., Chem. Commun. 58 (2022) 5594–5597.
doi: 10.1039/D2CC01035F
X.H. Dong, Y. Long, X.Y. Zhao, et al., Inorg. Chem. 59 (2020) 8345–8352.
doi: 10.1021/acs.inorgchem.0c00756
F. Yang, L. Wang, Y.W. Ge, et al., J. Alloys Compd. 834 (2020) 155154.
doi: 10.1016/j.jallcom.2020.155154
F.F. He, Y.W. Ge, X.Y. Zhao, et al., Dalton Trans. 49 (2020) 5276–5282.
doi: 10.1039/D0DT00846J
F.F. He, L. Wang, C.F. Hu, et al., Dalton Trans. 47 (2018) 17486–17492.
doi: 10.1039/C8DT04400G
F.F. He, Q. Wang, C.F. Hu, et al., Cryst. Growth Des. 18 (2018) 6239–6247.
doi: 10.1021/acs.cgd.8b01102
Q. Wang, L. Wang, X.Y. Zhao, et al., Inorg. Chem. Front. 6 (2019) 3125–3132.
doi: 10.1039/C9QI01036J
F.F. He, Y.L. Deng, X.Y. Zhao, et al., J. Mater. Chem. C 7 (2019) 5748–5754.
doi: 10.1039/C9TC01249D
X.H. Dong, Y. Long, L. Huang, et al., Inorg. Chem. Front. 9 (2022) 6441–6447.
S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798–3813.
doi: 10.1063/1.1656857
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
doi: 10.1103/PhysRevLett.77.3865
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Miao-Bin Xu , Qian-Qian Chen , Bing-Xuan Li , Ke-Zhao Du , Jin Chen . π-Lone pair synergy in (C7H4NO4)(IO3): Optimal balance among SHG, birefringence, and bandgap performance. Chinese Chemical Letters, 2025, 36(11): 110513-. doi: 10.1016/j.cclet.2024.110513
Qin Wang , Han Luo , Luli Wang , Ling Huang , Liling Cao , Xuehua Dong , Guohong Zou . KSb2F7·2KNO3: Unveiling the peak birefringence in inorganic antimony oxysalts. Chinese Chemical Letters, 2025, 36(7): 110173-. doi: 10.1016/j.cclet.2024.110173
Yu Zhou , Lin-Tao Jiang , Xiao-Ming Jiang , Bin-Wen Liu , Guo-Cong Guo . Mixed-anion square-pyramid [SbS3I2] units causing strong second-harmonic generation intensity and large birefringence. Chinese Chemical Letters, 2025, 36(4): 109740-. doi: 10.1016/j.cclet.2024.109740
Yong-Fang Shi , Sheng-Hua Zhou , Zuju Ma , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455
Ziyi Liu , Feifei Guo , Tingting Cao , Youxuan Sun , Xutang Tao , Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544
Haibo Wan , Zhengzhong Lv , Jicai Jiang , Xuefeng Cheng , Qingfeng Xu , Haibin Shi , Jianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Hua Tong , Haibo Li , Wei Liu , Gangfeng Ouyang . Lead-free organic antimony halide with dual-band intrinsic white light emission for warm WLED directly. Chinese Journal of Structural Chemistry, 2025, 44(10): 100678-100678. doi: 10.1016/j.cjsc.2025.100678
Ziqi Chen , Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695
Hong-Zhao Zan , Hai-Xin Zhao , Xi-Gui Gao , Xiao-Zhong Wang , Yun-Zhi Zhu , Guo-Kun Li , Xu-Yang Yao , Chen Li , Xiang-Wen Kong , Xiao-Wu Lei . Thermochromic luminescence in low-dimensional antimony halide for detection of trace amount of water and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2025, 44(12): 100734-100734. doi: 10.1016/j.cjsc.2025.100734
Zhilei Zhang , Yanan Sun , Xiaosong Shi , Xiaozhe Yin , Dawei Liu , Erjing Wang , Jie Liu , Yuanyuan Hu , Lang Jiang . Molecular tailoring towards two-dimensional organic crystals at the thickness limit. Chinese Chemical Letters, 2025, 36(9): 110786-. doi: 10.1016/j.cclet.2024.110786
Matvey K. Shurikov , Yuliana A. Kolesnikova , Darya E. Votkina , Pavel A. Abramov , Taisiya S. Sukhikh , Galina V. Romanenko , Sergey L. Veber , Dmitry E. Gorbunov , Nina P. Gritsan , Giuseppe Resnati , Evgeny V. Tretyakov , Vadim Yu. Kukushkin , Pavel S. Postnikov , Pavel V. Petunin . Engineering optical anisotropy in paramagnetic organic crystals: Dichroism of nitronyl nitroxide radicals. Chinese Journal of Structural Chemistry, 2025, 44(9): 100653-100653. doi: 10.1016/j.cjsc.2025.100653
Qinming Wu , Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310
Lu Cheng , Jinghua Quan , Hongyan Li . Recent advances in antimony-based anode materials for potassium-ion batteries: Material selection, structural design and storage mechanisms. Chinese Chemical Letters, 2025, 36(9): 110685-. doi: 10.1016/j.cclet.2024.110685
Peng-Fei Li , Chun-Li Hu , Bo Zhang , Jiang-Gao Mao , Fang Kong . From HgGa2(SeO3)4 to Hg2Ga(SeO3)2F: The first HgⅠ-based selenite birefringent crystal triggered by linear groups and fluoride ions. Chinese Chemical Letters, 2026, 37(2): 110588-. doi: 10.1016/j.cclet.2024.110588