High-density triple-phase contact points for enhanced photocatalytic CO2 reduction to methanol
-
* Corresponding authors.
E-mail addresses: ekan@njust.edu.cn (E. Kan), liang2100@njust.edu.cn (A. Li).
Citation:
Hanwen Jian, Kaiming Deng, Tongyu Wang, Chengxi Huang, Fang Wu, Hailing Huo, Bo Ouyang, Xuan Liu, Jingjing Ma, Erjun Kan, Ang Li. High-density triple-phase contact points for enhanced photocatalytic CO2 reduction to methanol[J]. Chinese Chemical Letters,
;2024, 35(2): 108651.
doi:
10.1016/j.cclet.2023.108651
R.P. Ye, J. Ding, W.B. Gong, et al., Nat. Commun. 10 (2019) 5698.
doi: 10.1038/s41467-019-13638-9
A. Li, T. Wang, C.C. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 3804–3808.
doi: 10.1002/anie.201812773
A. Li, T. Wang, X.X. Chang, et al., Chem. Sci. 9 (2018) 5334–5340.
doi: 10.1039/C8SC01812J
Y. Shen, C.J. Ren, L.R. Zheng, et al., Nat. Commun. 14 (2023) 1117.
doi: 10.1038/s41467-023-36778-5
S.X. Yuan, K. Su, Y.X. Feng, M. Zhang, T.B. Lu, Chin. Chem. Lett. 34 (2023) 107682.
doi: 10.1016/j.cclet.2022.07.025
D.F. Gao, W.J. Li, H.Y. Wang, G.X. Wang, R. Cai, Trans. Tianjin Univ. 28 (2022) 245–264.
doi: 10.1007/s12209-022-00326-x
M. Behrens, F. Studt, I. Kasatkin, et al., Science 336 (2012) 893–897.
doi: 10.1126/science.1219831
P. Zhu, H.T. Wang, Nat. Catal. 4 (2021) 943–951.
doi: 10.1038/s41929-021-00694-y
T. Amrillah, A.R. Supandi, V. Puspasari, A. Hermawan, Z.W. Seh, Trans. Tianjin Univ. 28 (2022) 307–322.
doi: 10.1007/s12209-022-00328-9
X.X. Chang, T. Wang, J.L. Gong, Energy Environ. Sci. 9 (2016) 2177–2196.
doi: 10.1039/C6EE00383D
A. Li, Q. Cao, G.Y. Zhou, et al., Angew. Chem. Int. Ed. 58 (2019) 14549–14555.
doi: 10.1002/anie.201908058
D. Wakerley, S. Lamaison, F. Ozanam, et al., Nat. Mater. 18 (2019) 1222–1227.
doi: 10.1038/s41563-019-0445-x
J. Li, G.X. Chen, Y.Y. Zhu, et al., Nat. Catal. 1 (2018) 592–600.
doi: 10.1038/s41929-018-0108-3
R. Sander, Atmos. Chem. Phys. Discuss. 14 (2014) 29615–30521.
P.W. Wang, T. Hayashi, Q.A. Meng, et al., Small 13 (2017) 1601250.
doi: 10.1002/smll.201601250
S. Wooh, N. Encinas, D. Vollmer, H.J. Butt, Adv. Mater. 29 (2017) 1604637.
doi: 10.1002/adma.201604637
X. Liu, C.X. Huang, B. Ouyang, et al., Chem. Eur. J. 28 (2022) e202201034.
doi: 10.1002/chem.202201034
R. Kuriki, H. Matsunaga, T. Nakashima, et al., J. Am. Chem. Soc. 138 (2016) 5159–5170.
doi: 10.1021/jacs.6b01997
J.C. Zhang, B. Zhao, W.K. Liang, et al., Adv. Sci. 7 (2020) 2002630.
doi: 10.1002/advs.202002630
C.Y. Dong, M.Y. Xing, J.L. Zhang, J. Phys. Chem. Lett. 7 (2016) 2962–2966.
doi: 10.1021/acs.jpclett.6b01287
X.C. Wang, J.C. Yu, C.M. Ho, Y.D. Hou, X.Z. Fu, Langmuir 21 (2005) 2552–2559.
doi: 10.1021/la047979c
T. Wang, X.G. Meng, P. Li, et al., Nano Energy 9 (2014) 50–60.
doi: 10.1016/j.nanoen.2014.06.027
W. Zhang, Y. Tian, H.L. He, et al., Natl. Sci. Rev. 7 (2020) 1702–1725.
doi: 10.1093/nsr/nwaa021
J.G. Yu, Y.R. Su, B. Cheng, Adv. Funct. Mater. 17 (2007) 1984–1990.
doi: 10.1002/adfm.200600933
J.M. Kolle, M. Fayaz, A. Sayari, Chem. Rev. 121 (2021) 7280–7345.
doi: 10.1021/acs.chemrev.0c00762
A. Vantomme, A. Léonard, Z.Y. Yuan, B.L. Su, Colloids Surf. A: Physicochem. Eng. Asp. 300 (2007) 70–78.
doi: 10.1016/j.colsurfa.2007.01.010
X.Y. Wang, H.B. Li, Y. Liu, et al., Appl. Energy 99 (2012) 198–205.
H. Zhou, X. Sheng, Z.Y. Ding, et al., ACS Catal. 12 (2022) 13690–13696.
doi: 10.1021/acscatal.2c03987
J.L. Blin, A. Léonard, Z.Y. Yuan, et al., Angew. Chem. Int. Ed. 115 (2003) 2978–2981.
doi: 10.1002/ange.200250816
A. Lemaire, J.C. Rooke, L.H. Chen, B.L. Su, Langmuir 27 (2011) 3030–3043.
doi: 10.1021/la104679h
M. Kruk, M. Jaroniec, Chem. Mater. 13 (2001) 3169–3183.
doi: 10.1021/cm0101069
K. Sing, Pure Appl. Chem. 54 (1982) 2201–2218.
doi: 10.1351/pac198254112201
X.C. Li, V.T. John, G.H. He, et al., Langmuir 25 (2009) 7586–7593.
doi: 10.1021/la900158r
Y. Yuan, J.W. Wang, W.B. Shi, et al., Chin. Chem. Lett. 34 (2023) 107807.
doi: 10.1016/j.cclet.2022.107807
M.A. Isaacs, N. Robinson, B. Barbero, et al., J. Mater. Chem. A 7 (2019) 11814–11825.
doi: 10.1039/C9TA01867K
J. Liu, L.J. Ye, S. Wooh, et al., ACS Appl. Mater. Interfaces 11 (2019) 27422–27425.
doi: 10.1021/acsami.9b07490
S. Rong, P.C. Su, S.Z. Chen, M.M. Jia, W.B. Li, Chin. Chem. Lett. 33 (2022) 2134–2138.
doi: 10.1016/j.cclet.2021.09.012
S.J. Ye, Y.Z. Hou, X. Li, K. Jiao, Q. Du, Trans. Tianjin Univ. 29 (2023) 1–13.
doi: 10.1007/s12209-021-00309-4
E. Ataeivarjovi, Z.G. Tang, J. Chen, Z.J. Zhao, G. Dong, ACS Sustain. Chem. Eng. 7 (2019) 12125–12137.
M.J. Kang, J.E. Kim, D.W. Kang, et al., J. Mater. Chem. A 7 (2019) 8177–8183.
doi: 10.1039/C8TA07965J
L.X. Yang, C. Shi, L. Li, Y. Li, Chin. Chem. Lett. 31 (2020) 227–230.
doi: 10.1016/j.cclet.2019.04.025
A. Li, X.X. Chang, Z.Q. Huang, et al., Angew. Chem. Int. Ed. 128 (2016) 13938–13942.
doi: 10.1002/ange.201605666
A. Li, T. Wang, X.X. Chang, et al., Chem. Sci. 7 (2016) 890–895.
doi: 10.1039/C5SC04163E
J.Y. Xiong, M.M. Zhang, M.J. Lu, et al., Chin. Chem. Lett. 33 (2022) 1313–1316.
doi: 10.1016/j.cclet.2021.07.052
V. Danilov, H.E. Wagner, J. Meichsner, Plasma Process. Polym. 8 (2011) 1059–1067.
doi: 10.1002/ppap.201100032
K. Kočí, K. Matějů, L. Obalová, et al., Appl. Catal. 96 (2010) 239–244.
doi: 10.1016/j.apcatb.2010.02.030
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
doi: 10.1002/anie.201207199
Y. Ma, X.L. Wang, Y.S. Jia, et al., Chem. Rev. 114 (2014) 9987–10043.
doi: 10.1021/cr500008u
R.J. Xu, H. Xu, S.B. Ning, et al., Trans. Tianjin Univ. 26 (2020) 470–478.
doi: 10.1007/s12209-020-00264-6
A. Sharma, B.K. Lee, Catal. Today 298 (2017) 158–167.
doi: 10.1016/j.cattod.2017.05.003
X. Cheng, R. Chen, X. Zhu, et al., Energy 120 (2017) 276–282.
doi: 10.1016/j.energy.2016.11.081
X. Li, H.L. Liu, D.L. Luo, et al., Chem. Eng. J. 180 (2012) 151–158.
doi: 10.1016/j.cej.2011.11.029
W.G. Tu, Y.C. Li, L.B. Kuai, et al., Nanoscale 9 (2017) 9065–9070.
doi: 10.1039/C7NR03238B
W.B. Chen, S.J. Wu, L.Y. Xie, et al., Chem. Eng. J. 464 (2023) 142612.
doi: 10.1016/j.cej.2023.142612
J.J. Wang, Y.H. Jing, T. Ouyang, Q. Zhang, C.T. Chang, Catal. Commun. 59 (2015) 69–72.
doi: 10.1016/j.catcom.2014.09.030
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469