Interactions of phenol and benzaldehyde in electrocatalytic upgrading process
-
* Corresponding authors.
E-mail addresses: liningec@tju.edu.cn (N. Li), chen@tju.edu.cn (G. Chen), houla@cae.cn (L. Hou).
Citation: Lan Liang, Chuanbin Wang, Xukai Lu, Yunan Sun, Beibei Yan, Ning Li, Guanyi Chen, Li'an Hou. Interactions of phenol and benzaldehyde in electrocatalytic upgrading process[J]. Chinese Chemical Letters, ;2024, 35(2): 108581. doi: 10.1016/j.cclet.2023.108581
S. Wang, S. Zhao, B.B. Uzoejinwa, et al., Energy Convers. Manage. 222 (2020) 113253.
doi: 10.1016/j.enconman.2020.113253
Z. Wang, Q. Bui, B. Zhang, et al., Sci. Total Environ. 743 (2020) 140741.
doi: 10.1016/j.scitotenv.2020.140741
M.W. Zafar, A. Sinha, Z. Ahmed, et al., Renew. Sust. Energy Rev. 142 (2021) 110868.
doi: 10.1016/j.rser.2021.110868
X. Hu, M. Gholizadeh, Renew. Sust. Energy Rev. 134 (2020) 110124.
doi: 10.1016/j.rser.2020.110124
R. Kumar, V. Strezov, H. Weldekidan, et al., Renew. Sust. Energy Rev. 123 (2020) 109763.
doi: 10.1016/j.rser.2020.109763
G. Chen, L. Liang, N. Li, et al., ChemSusChem 14 (2021) 1037–1052.
doi: 10.1002/cssc.202002063
X. Lian, Y. Xue, Z. Zhao, et al., Int. J. Energy Res. 41 (2017) 1798–1816.
doi: 10.1002/er.3726
T. Chen, C. Wu, R. Liu, Bioresour. Technol. 102 (2011) 9236–9240.
doi: 10.1016/j.biortech.2011.07.033
S. Li, S. Zhang, Z. Feng, et al., Environ. Prog. Sustain. Energy 34 (2015) 240–247.
doi: 10.1002/ep.11936
S. Xiu, A. Shahbazi, Renew. Sust. Energy Rev. 16 (2012) 4406–4414.
doi: 10.1016/j.rser.2012.04.028
J.Y. Park, W. Jeon, J.H. Lee, et al., Chem. Eng. J. 377 (2019) 120312.
doi: 10.1016/j.cej.2018.11.010
L. Leng, H. Li, X. Yuan, et al., Energy 161 (2018) 214–232.
doi: 10.1016/j.energy.2018.07.117
Y.P. Wijaya, K.J. Smith, C.S. Kim, et al., Green Chem. 22 (2020) 7233–7264.
doi: 10.1039/D0GC02782K
S.A. Akhade, N. Singh, O.Y. Gutierrez, et al., Chem. Rev. 120 (2020) 11370–11419.
doi: 10.1021/acs.chemrev.0c00158
B. Zhang, J. Zhang, Z. Zhong, ACS Appl. Energy Mater. 1 (2018) 6758–6763.
doi: 10.1021/acsaem.8b01718
M. Garedew, D. Young-Farhat, J.E. Jackson, et al., ACS Sustain. Chem. Eng. 7 (2019) 8375–8386.
doi: 10.1021/acssuschemeng.9b00019
J.A. Lopez-Ruiz, U. Sanyal, J. Egbert, et al., ACS Sustain. Chem. Eng. 6 (2018) 16073–16085.
doi: 10.1021/acssuschemeng.8b02637
J. Carneiro, E. Nikolla, Annu. Rev. Chem. Biomol. 10 (2019) 85–104.
doi: 10.1146/annurev-chembioeng-060718-030148
Y. Song, U. Sanyal, D. Pangotra, et al., J. Catal. 359 (2018) 68–75.
doi: 10.1016/j.jcat.2017.12.026
D.C. Cantu, A.B. Padmaperuma, M.T. Nguyen, et al., ACS Catal. 8 (2018) 7645–7658.
doi: 10.1021/acscatal.8b00858
B. zhao, M. Chen, Q. Guo, et al., Electrochim. Acta 135 (2014) 139–146.
doi: 10.1016/j.electacta.2014.04.164
X. Zhang, M. Han, G. Liu, et al., Appl. Catal. B 244 (2019) 899–908.
doi: 10.1016/j.apcatb.2018.12.025
Z. Gu, Z. Zhang, N. Ni, et al., Environ. Sci. Technol. 56 (2022) 4356–4366.
doi: 10.1021/acs.est.1c07457
W. Liu, W. You, Y. Gong, et al., Energy Environ. Sci. 13 (2020) 917–927.
doi: 10.1039/C9EE02783A
I.Y. Jeon, H.J. Noh, J.B. Baek, et al., Chem. Asian J. 15 (2020) 2282–2293.
doi: 10.1002/asia.201901318
Y. Shao, J. Sui, G. Yin, et al., Appl. Catal. B 79 (2008) 89–99.
doi: 10.1016/j.apcatb.2007.09.047
Y. Wang, X. Tian, S. Wang, et al., Chem. Eng. J. 428 (2022) 131231.
doi: 10.1016/j.cej.2021.131231
X. Lu, J. Wang, W. Peng, et al., Fuel 331 (2023) 125845.
doi: 10.1016/j.fuel.2022.125845
C.H. Lam, W. Deng, L. Lang, et al., Energy Fuels 34 (2020) 7915–7928.
doi: 10.1021/acs.energyfuels.0c01380
G. Kresse, Phys. Rev. B 54 (1996) 11169–11186.
doi: 10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868.
doi: 10.1103/PhysRevLett.77.3865
E.M. Andrews, J.A. Lopez-Ruiz, J.D. Egbert, et al., ACS Sustain. Chem. Eng. 8 (2020) 4407–4418.
doi: 10.1021/acssuschemeng.9b07041
Z. Lou, J. Zhou, M. Sun, et al., Chem. Eng. J. 352 (2018) 549–557.
doi: 10.1016/j.cej.2018.07.057
Y. Kang, Y. Tang, L. Zhu, et al., ACS Catal. 22 (2022) 14773–14793.
Y. Kang, J. Henzie, H. Gu, et al., Small 16 (2020) 1906707.
doi: 10.1002/smll.201906707
D. Guo, S. You, F. Li, et al., Chin. Chem. Lett. 33 (2022) 1–10.
doi: 10.1016/j.cclet.2021.06.027
Y. Liu, J. Li, B. Zhou, et al., Environ. Chem. Lett. 7 (2009) 363–368.
doi: 10.1007/s10311-008-0180-z
L. Jin, S. You, N. Ren, et al., Environ. Sci. Technol. 56 (2022) 11750–11759.
doi: 10.1021/acs.est.2c03904
S. Wu, M. Zhang, S. Huang, et al., Chin. Chem. Lett. 34 (2023) 107282.
doi: 10.1016/j.cclet.2022.03.005
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
Zhibin Ren , Shan Li , Xiaoying Liu , Guanghao Lv , Lei Chen , Jingli Wang , Xingyi Li , Jiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629
Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Guanyang Zeng , Xingqiang Liu , Liangqiao Wu , Zijie Meng , Debin Zeng , Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
Jinyuan Cui , Tingting Yang , Teng Xu , Jin Lin , Kunlong Liu , Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550