A review on g-C3N4 decorated with silver for photocatalytic energy conversion
-
* Corresponding author.
E-mail address: jihaodong@pku.edu.cn (H. Ji).
Citation:
Ziyu Pan, Wufan Ding, Hanchun Chen, Haodong Ji. A review on g-C3N4 decorated with silver for photocatalytic energy conversion[J]. Chinese Chemical Letters,
;2024, 35(2): 108567.
doi:
10.1016/j.cclet.2023.108567
D. Li, X. Li, J. Gong, Chem. Rev. 116 (2016) 11529–11653.
doi: 10.1021/acs.chemrev.6b00099
Y. Xing, X. Wang, S. Hao, et al., Chin. Chem. Lett. 32 (2021) 13–20.
doi: 10.1016/j.cclet.2020.11.011
S. Patnaik, D.P. Sahoo, K. Parida, Carbon 172 (2021) 682–711.
doi: 10.1016/j.carbon.2020.10.073
L. Zhang, Z.J. Zhao, T. Wang, J. Gong, Chem. Soc. Rev. 47 (2018) 5423–5443.
doi: 10.1039/C8CS00016F
Q. Zeng, S. Chang, M. Wang, et al., Chin. Chem. Lett. 32 (2021) 2212–2216.
doi: 10.1016/j.cclet.2020.12.062
B.H. Kreps, Am. J. Econ. Sociol. 79 (2020) 695–717.
doi: 10.1111/ajes.12336
J.D. Xiao, H.L. Jiang, Acc. Chem. Res. 52 (2019) 356–366.
doi: 10.1021/acs.accounts.8b00521
P. Zhang, X.W. Lou, Adv. Mater. 31 (2019) 1900281.
doi: 10.1002/adma.201900281
Z.H. Xue, D. Luan, H. Zhang, X.W. Lou, Joule 6 (2022) 92–133.
doi: 10.1016/j.joule.2021.12.011
J. Liu, H. Wu, F. Li, et al., Adv. Sustain. Syst. 4 (2020) 2000151.
doi: 10.1002/adsu.202000151
J. Liang, X. Yang, Y. Wang, et al., J. Mater. Chem. A 9 (2021) 12898–12922.
doi: 10.1039/d1ta00890k
Q. Zhang, Y. Xiao, L. Yang, et al., Chin. Chem. Lett. 34 (2023) 107628.
doi: 10.1016/j.cclet.2022.06.051
Z. fiqar, J. Tao, T. Yang, et al., Surf. Interfaces 26 (2021) 101312.
doi: 10.1016/j.surfin.2021.101312
X. Wang, H. Jiang, M. Zhu, X. Shi, Chin. Chem. Lett. 34 (2023) 107683.
doi: 10.1016/j.cclet.2022.07.026
G. Xu, H. Zhang, J. Wei, et al., ACS Nano 12 (2018) 5333–5340.
doi: 10.1021/acsnano.8b00110
Y. Liu, L. Chen, X. Liu, et al., Chin. Chem. Lett. 33 (2022) 1385–1389.
doi: 10.3390/cryst12101385
F. Wang, Y. Wang, Y. Feng, et al., Appl. Catal. B: Environ. 221 (2018) 510–520.
doi: 10.1016/j.apcatb.2017.09.055
G. Mamba, A.K. Mishra, Appl. Catal. B: Environ. 198 (2016) 347–377.
doi: 10.1016/j.apcatb.2016.05.052
J. Liu, Y. Liu, N. Liu, et al., Science 347 (2015) 970–974.
doi: 10.1126/science.aaa3145
S. Patnaik, D.P. Sahoo, K.M. Parida, J. Colloid Interface Sci. 560 (2020) 519–535.
doi: 10.1016/j.jcis.2019.09.041
N. Cheng, P. Jiang, Q. Liu, et al., Analyst 139 (2014) 5065–5068.
doi: 10.1039/C4AN00914B
S. Patnaik, K.K. Das, A. Mohanty, K. Parida, Catal. Today 315 (2018) 52–66.
doi: 10.1016/j.cattod.2018.04.008
P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaroniec, J. Mater. Chem. A 5 (2017) 3230–3238.
doi: 10.1039/C6TA08310B
J. Zhao, L. Ma, H. Wang, et al., Appl. Surf. Sci. 332 (2015) 625–630.
doi: 10.1016/j.apsusc.2015.01.233
R. Zhang, S. Niu, X. Zhang, et al., Appl. Surf. Sci. 489 (2019) 427–434.
doi: 10.1016/j.apsusc.2019.05.362
N. Sagara, S. Kamimura, T. Tsubota, T. Ohno, Appl. Catal. B: Environ. 192 (2016) 193–198.
doi: 10.1016/j.apcatb.2016.03.055
W. Chen, T.Y. Liu, T. Huang, X.H. Liu, X.J. Yang, Nanoscale 8 (2016) 3711–3719.
doi: 10.1039/C5NR07695A
S.P. Adhikari, Z.D. Hood, VW. Chen, et al., Sustain. Energy Fuels 2 (2018) 2507–2515.
doi: 10.1039/c8se00319j
W. Zhao, Y. Li, P. Zhao, et al., Chem. Eng. J. 405 (2021) 126555.
doi: 10.1016/j.cej.2020.126555
Q. Chen, C. Yuan, C. Zhai, Chin. Chem. Lett. 33 (2022) 983–986.
doi: 10.1016/j.cclet.2021.07.047
H. Liu, X. Liu, W. Yang, et al., J. Mater. Chem. A 7 (2019) 2022–2026.
doi: 10.1039/c8ta11172c
I.F. Teixeira, E.C.M. Barbosa, S.C.E. Tsang, P.H.C. Camargo, Chem. Soc. Rev. 47 (2018) 7783–7817.
doi: 10.1039/c8cs00479j
Y. Bu, Z. Chen, W. Li, Appl. Catal. B: Environ. 144 (2014) 622–630.
doi: 10.1016/j.apcatb.2013.07.066
J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Nat. Mater. 10 (2011) 361–366.
doi: 10.1038/nmat3004
F. Wu, C. Pu, M. Zhang, B. Liu, J. Yang, Surf. Interfaces 25 (2021) 101298.
doi: 10.1016/j.surfin.2021.101298
Y. Yang, W. Guo, Y. Guo, et al., J. Hazard. Mater. 271 (2014) 150–159.
doi: 10.1016/j.jhazmat.2014.02.023
S. Ren, G. Zhao, Y. Wang, B. Wang, Q. Wang, Nanotechnology 26 (2015) 125403.
doi: 10.1088/0957-4484/26/12/125403
A. Jakab, C. Rosman, Y. Khalavka, et al., ACS Nano 5 (2011) 6880–6885.
doi: 10.1021/nn200877b
C. Clavero, Nat. Photonics 8 (2014) 95–103.
doi: 10.1038/nphoton.2013.238
K. Huang, C. Li, L. Wang, W. Wang, X. Meng, Chem. Eng. J. 425 (2021) 131493.
doi: 10.1016/j.cej.2021.131493
J. Wang, J. Cong, H. Xu, et al., ACS Sustain. Chem. Eng. 5 (2017) 10633–10639.
doi: 10.1021/acssuschemeng.7b02608
S. Bayan, S. Pal, S.K. Ray, Nano Energy 94 (2022) 106928.
doi: 10.1016/j.nanoen.2022.106928
Y. Chen, X. Ren, X. Wang, et al., Int. J. Hydrog. Energy 47 (2022) 250–263.
doi: 10.1016/j.ijhydene.2021.10.024
I. Majeed, U. Manzoor, F.K. Kanodarwala, et al., Catal. Sci. Technol. 8 (2018) 1183–1193.
doi: 10.1039/C7CY02219K
X. Li, S. Zhao, X. Duan, et al., Appl. Catal. B: Environ. 283 (2021) 119660.
doi: 10.1016/j.apcatb.2020.119660
S. Lv, C. Wu, Y.H. Ng, et al., Int. J. Hydrog. Energy 47 (2022) 42136–42149.
doi: 10.1016/j.ijhydene.2021.06.214
A. Mishra, A. Mehta, S. Basu, et al., Carbon 149 (2019) 693–721.
doi: 10.1016/j.carbon.2019.04.104
A. Balakrishnan, M. Chinthala, Chemosphere 297 (2022) 134190.
doi: 10.1016/j.chemosphere.2022.134190
J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018) 1701503.
doi: 10.1002/aenm.201701503
S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176.
doi: 10.1002/adma.201500033
Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 54 (2015) 12868–12884.
doi: 10.1002/anie.201501788
T. Xiong, W. Cen, Y. Zhang, F. Dong, ACS Catal. 6 (2016) 2462–2472.
doi: 10.1021/acscatal.5b02922
S. Wang, L. Wang, H. Cong, et al., J. Environ. Chem. Eng. 10 (2022) 108189.
doi: 10.1016/j.jece.2022.108189
P. Ding, H. Ji, P. Li, et al., Appl. Catal. B: Environ. 300 (2022) 120633.
doi: 10.1016/j.apcatb.2021.120633
S. Zhang, H. Gao, X. Liu, et al., ACS Appl. Mater. Interfaces 8 (2016) 35138–35149.
doi: 10.1021/acsami.6b09260
Z. Cai, J. Chen, S. Xing, D. Zheng, L. Guo, J. Hazard. Mater. 416 (2021) 126195.
doi: 10.1016/j.jhazmat.2021.126195
L. Liu, J. Zhang, B. Zhang, et al., Green Chem. 20 (2018) 4206–4209.
doi: 10.1039/c8gc01666f
Y. Ren, Q. Han, Y. Zhao, H. Wen, Z. Jiang, J. Hazard. Mater. 404 (2021) 124153.
doi: 10.1016/j.jhazmat.2020.124153
X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596–1606.
doi: 10.1021/cs300240x
J. Liu, H. Wang, M. Antonietti, Chem. Soc. Rev. 45 (2016) 2308–2326.
doi: 10.1039/C5CS00767D
J. He, X. Wang, S. Jin, Z.Q. Liu, M. Zhu, Chin. J. Catal. 43 (2022) 1306–1315.
doi: 10.1016/S1872-2067(21)63936-0
B.V. Lotsch, M. Döblinger, J. Sehnert, et al., Chem. Eur. J. 13 (2007) 4969–4980.
doi: 10.1002/chem.200601759
Z. Gu, Y. Asakura, S. Yin, Nanotechnology 31 (2019) 114001.
D. Das, S.L. Shinde, K.K. Nanda, ACS Appl. Mater. Interfaces 8 (2016) 2181–2186.
doi: 10.1021/acsami.5b10770
Q.X. Luo, Y. Li, R.P. Liang, et al., Electroanal. Chem. 856 (2020) 113706.
doi: 10.1016/j.jelechem.2019.113706
X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76–80.
doi: 10.1038/nmat2317
J.S. Zhang, X.F. Chen, K. Takanabe, et al., Angew. Chem. Int. Ed. 49 (2010) 441–444.
doi: 10.1002/anie.200903886
A. Thomas, A. Fischer, F. Goettmann, et al., J. Mater. Chem. 18 (2008) 4893–4908.
doi: 10.1039/b800274f
Q.M. Feng, Y.Z. Shen, M.X. Li, et al., Anal. Chem. 88 (2016) 937–944.
doi: 10.1021/acs.analchem.5b03670
A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Nano-Micro Lett. 9 (2017) 47.
doi: 10.1007/s40820-017-0148-2
X. Wang, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Adv. Mater. 31 (2019) 1803625.
doi: 10.1002/adma.201803625
Y. Zhang, M. Antonietti, Chem. Asian J. 5 (2010) 1307–1311.
doi: 10.1002/asia.200900685
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159–7329.
doi: 10.1021/acs.chemrev.6b00075
L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater. 25 (2015) 5360–5367.
doi: 10.1002/adfm.201502253
Q. Cheng, Y. He, Y. Ge, J. Zhou, G. Song, Microchim. Acta 185 (2018) 332.
doi: 10.1007/s00604-018-2864-9
T. Alizadeh, F. Rafiei, Mater. Chem. Phys. 227 (2019) 176–183.
doi: 10.1016/j.matchemphys.2019.01.060
S.M. Abdel Moneim, T.A. Gad-Allah, M.F. El-Shahat, A.M. Ashmawy, H.S. Ibrahim, J. Environ. Chem. Eng. 4 (2016) 4165–4172.
doi: 10.1016/j.jece.2016.08.034
X. Deng, X. Kuang, J. Zeng, et al., Nanotechnology 33 (2022) 175401.
doi: 10.1088/1361-6528/ac493d
K. Wang, Q. Li, B. Liu, et al., Appl. Catal. B: Environ. 176–177 (2015) 44–52.
J. Xiao, Y. Xie, F. Nawaz, et al., Appl. Catal. B: Environ. 183 (2016) 417–425.
doi: 10.1016/j.apcatb.2015.11.010
X.D. Sun, Y.Y. Li, J. Zhou, et al., J. Colloid Interf. Sci. 451 (2015) 108–116.
doi: 10.1016/j.jcis.2015.03.059
G. Liu, T. Wang, H. Zhang, et al., Angew. Chem. 127 (2015) 13765–13769.
doi: 10.1002/ange.201505802
Y. Shiraishi, Y. Kofuji, H. Sakamoto, et al., ACS Catal. 5 (2015) 3058–3066.
doi: 10.1021/acscatal.5b00408
Z. Tong, D. Yang, Z. Li, et al., ACS Nano 11 (2017) 1103–1112.
doi: 10.1021/acsnano.6b08251
J. Xu, H.T. Wu, X. Wang, et al., Phys. Chem. Chem. Phys. 15 (2013) 4510–4517.
doi: 10.1039/c3cp44402c
L. Shi, L. Liang, F. Wang, J. Ma, J. Sun, Catal. Sci. Technol. 4 (2014) 3235–3243.
doi: 10.1039/C4CY00411F
F. Dong, L. Wu, Y. Sun, et al., J. Mater. Chem. 21 (2011) 15171–15174.
doi: 10.1039/c1jm12844b
J.P. Mathias, E.E. Simanek, J.A. Zerkowski, C.T. Seto, G.M. Whitesides, J. Am. Chem. Soc. 116 (1994) 4316–4325.
doi: 10.1021/ja00089a021
W. Wang, J.C. Yu, Z. Shen, D.K.L. Chan, T. Gu, Chem. Commun. 50 (2014) 10148–10150.
doi: 10.1039/C4CC02543A
X. Zhang, H. Wang, H. Wang, et al., Adv. Mater. 26 (2014) 4438–4443.
doi: 10.1002/adma.201400111
S. Zhang, J. Li, M. Zeng, et al., Nanoscale 6 (2014) 4157–4162.
doi: 10.1039/c3nr06744k
X. Cao, J. Ma, Y. Lin, et al., Spectrochim. Acta A 151 (2015) 875–880.
doi: 10.1016/j.saa.2015.07.034
Y.C. Lu, J. Chen, A.J. Wang, et al., J. Mater. Chem. C 3 (2015) 73–78.
doi: 10.1039/C4TC02111H
J. Wu, S. Yang, J. Li, et al., Adv. Optical Mater. 4 (2016) 2095–2101.
doi: 10.1002/adom.201600570
R. Cui, C. Liu, J. Shen, et al., Adv. Funct. Mater. 18 (2008) 2197–2204.
doi: 10.1002/adfm.200701340
D. Vidyasagar, S.G. Ghugal, A. Kulkarni, et al., Appl. Catal. B: Environ. 221 (2018) 339–348.
doi: 10.1016/j.apcatb.2017.09.030
J. Ruan, X. Wu, Y. Wang, et al., J. Mater. Chem. A 7 (2019) 19305–19315.
doi: 10.1039/c9ta05205d
J. Liu, J. Huang, H. Zhou, M. Antonietti, ACS Appl. Mater. Interfaces 6 (2014) 8434–8440.
doi: 10.1021/am501319v
X.H. Li, X. Wang, M. Antonietti, Chem. Sci. 3 (2012) 2170–2174.
doi: 10.1039/c2sc20289a
Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Angew. Chem. Int. Ed. 53 (2014) 11926–11930.
doi: 10.1002/anie.201407319
Q. Guo, Y. Xie, X. Wang, et al., Chem. Commun. 4 (2004) 26–27.
J. Li, C. Cao, H. Zhu, Nanotechnology 18 (2007) 115605.
doi: 10.1088/0957-4484/18/11/115605
S.W. Bian, Z. Ma, W.G. Song, J. Phys. Chem. C 113 (2009) 8668–8672.
doi: 10.1021/jp810630k
S. Wang, C. Li, T. Wang, et al., J. Mater. Chem. A 2 (2014) 2885–2890.
doi: 10.1039/c3ta14576j
F. He, G. Chen, J. Miao, et al., ACS Energy Lett. 1 (2016) 969–975.
doi: 10.1021/acsenergylett.6b00398
Z. Tong, D. Yang, Y. Sun, Y. Nan, Z. Jiang, Small 12 (2016) 4093–4101.
doi: 10.1002/smll.201601660
Y. Zhao, Z. Liu, W. Chu, et al., Adv. Mater. 20 (2008) 1777–1781.
doi: 10.1002/adma.200702230
J. Liu, J. Huang, D. Dontosova, M. Antonietti, RSC Adv. 3 (2013) 22988–22993.
doi: 10.1039/c3ra44490b
M. Tahir, C. Cao, N. Mahmood, et al., ACS Appl. Mater. Interfaces 6 (2014) 1258–1265.
doi: 10.1021/am405076b
Y. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Nano Lett. 16 (2016) 2268–2277.
doi: 10.1021/acs.nanolett.5b04496
X. Yuan, C. Zhou, Y. Jin, et al., J. Colloid Interface Sci. 468 (2016) 211–219.
doi: 10.1016/j.jcis.2016.01.048
Q. Han, F. Zhao, C. Hu, et al., Nano Res. 8 (2015) 1718–1728.
doi: 10.1007/s12274-014-0675-9
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763–4770.
doi: 10.1002/adfm.201200922
S. Yang, Y. Gong, J. Zhang, et al., Adv. Mater. 25 (2013) 2452–2456.
doi: 10.1002/adma.201204453
X. Zhang, X. Xie, H. Wang, et al., J. Am. Chem. Soc. 135 (2013) 18–21.
doi: 10.1021/ja308249k
T.Y. Ma, Y. Tang, S. Dai, S.Z. Qiao, Small 10 (2014) 2382–2389.
doi: 10.1002/smll.201303827
K. Schwinghammer, M.B. Mesch, V. Duppel, et al., J. Am. Chem. Soc. 136 (2014) 1730–1733.
doi: 10.1021/ja411321s
L. Chen, Z. Song, X. Liu, et al., Analyst 143 (2018) 1609–1614.
doi: 10.1039/C7AN02089A
S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 50 (2011) 5339–5343.
doi: 10.1002/anie.201100170
J. Zhang, J. Sun, K. Maeda, et al., Energy Environ. Sci. 4 (2011) 675–678.
doi: 10.1039/C0EE00418A
O. Fontelles-Carceller, M.J. Muñoz-Batista, M. Fernández-García, A. Kubacka, ACS Appl. Mater. Interfaces 8 (2016) 2617–2627.
doi: 10.1021/acsami.5b10434
Y. Song, J. Qi, J. Tian, S. Gao, F. Cui, Chem. Eng. J. 341 (2018) 547–555.
doi: 10.1016/j.cej.2018.02.063
M.J. Muñoz-Batista, O. Fontelles-Carceller, M. Ferrer, M. Fernández-García, A. Kubacka, Appl. Catal. B: Environ. 183 (2016) 86–95.
doi: 10.1016/j.apcatb.2015.10.024
S. Gao, H. Ji, P. Yang, et al., Small 19 (2023) 2206114.
doi: 10.1002/smll.202206114
L. Ge, C. Han, J. Liu, Y. Li, Appl. Catal. A: Gen. 409-410 (2011) 215–222.
doi: 10.1016/j.apcata.2011.10.006
Y. Yang, Y. Guo, F. Liu, et al., Appl. Catal. B: Environ. 142-143 (2013) 828–837.
doi: 10.1016/j.apcatb.2013.06.026
T. Sano, K. Koike, T. Hori, et al., Appl. Catal. B: Environ. 198 (2016) 133–141.
doi: 10.1016/j.apcatb.2016.05.057
K.Z. Qi, Y. Li, Y.b. Xie, et al., Front. Chem. 7 (2019) 91.
doi: 10.3389/fchem.2019.00091
M.E. Khan, T.H. Han, M.M. Khan, M.R. Karim, M.H. Cho, ACS Appl. Nano Mater. 1 (2018) 2912–2922.
doi: 10.1021/acsanm.8b00548
T. Ishaq, M. Yousaf, I.A Bhatti, et al., Int. J. Hydrog. Energy 45 (2020) 31574–31584.
doi: 10.1016/j.ijhydene.2020.08.191
T. Ren, Y. Dang, Y. Xiao, et al., Inorg. Chem. Commun. 123 (2021) 108367.
doi: 10.1016/j.inoche.2020.108367
H. Zhu, K.J. Wu, C.H. He, Chem. Eng. J. 429 (2022) 132412.
doi: 10.1016/j.cej.2021.132412
X. Yao, W. Zhang, J. Huang, et al., Appli. Catal. A: Gen. 601 (2020) 117647.
doi: 10.1016/j.apcata.2020.117647
Y. Li, M. Wan, G. Yan, P. Qiu, X. Wang, J. Pharm. Anal. 11 (2021) 183–190.
doi: 10.1016/j.jpha.2020.04.007
E. Murugan, S. Santhoshkumar, S. Govindaraju, M. Palanichamy, Spectrochim. Acta A 246 (2021) 119036.
doi: 10.1016/j.saa.2020.119036
K. Mallikarjuna, S.V.P. Vattikuti, R. Manne, et al., Nanomaterials 11 (2021) 2918.
doi: 10.3390/nano11112918
T.M.O. Le, T.H. Lam, T.N. Pham, et al., Polymers 10 (2018) 633.
doi: 10.3390/polym10060633
Y. Ling, G. Liao, P. Xu, L. Li, Sep. Purif. Technol. 216 (2019) 1–8.
doi: 10.1016/j.seppur.2019.01.057
Y. Wang, X. Zhao, D. Cao, Y. Wang, Y. Zhu, Appl. Catal. B: Environ. 211 (2017) 79–88.
doi: 10.1016/j.apcatb.2017.03.079
Z. Zhao, W. Zhang, W. Liu, et al., Sci. Total Environ. 742 (2020) 140642.
doi: 10.1016/j.scitotenv.2020.140642
F. Wang, Y. Wang, Y. Li, et al., Dalton Trans. 47 (2018) 6924–6933.
doi: 10.1039/C8DT00919H
K.L. Wang, Y. Li, T. Sun, et al., Appl. Surf. Sci. 476 (2019) 741–748.
doi: 10.3390/catal9090741
H. Xu, J. Yan, Y. Xu, et al., Appl. Catal. B: Environ. 129 (2013) 182–193.
doi: 10.1016/j.apcatb.2012.08.015
F.J. Zhang, F.Z. Xie, S.F. Zhu, et al., Chem. Eng. J. 228 (2013) 435–441.
doi: 10.1016/j.cej.2013.05.027
L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Catal. Sci. Technol. 4 (2014) 758–765.
doi: 10.1039/c3cy00871a
Y. Feng, J. Shen, Q. Cai, H. Yang, Q. Shen, New J. Chem. 39 (2015) 1132–1138.
doi: 10.1039/C4NJ01433B
Y. Li, L. Fang, R. Jin, et al., Nanoscale 7 (2015) 758–764.
doi: 10.1039/C4NR06565D
L. Shi, L. Liang, F. Wang, M. Liu, J. Sun, Dalton Trans. 45 (2016) 5815–5824.
doi: 10.1039/C5DT04644K
B. Jia, W. Zhao, L. Fan, et al., Catal. Sci. Technol. 8 (2018) 1447–1453.
doi: 10.1039/C7CY02325A
D. Chen, B. Li, Q. Pu, et al., J. Hazard. Mater. 373 (2019) 303–312.
doi: 10.1016/j.jhazmat.2019.03.090
L. Sun, C. Liu, J. Li, et al., Chin. J. Catal. 40 (2019) 80–94.
doi: 10.1016/S1872-2067(18)63172-9
M. Chen, C. Guo, S. Hou, et al., Appl. Catal. B: Environ. 266 (2020) 118614.
doi: 10.1016/j.apcatb.2020.118614
Y. Orooji, M. Ghanbari, O. Amiri, M. Salavati-Niasari, J. Hazard. Mater. 389 (2020) 122079.
doi: 10.1016/j.jhazmat.2020.122079
D. Sun, Y. Zhang, Y. Liu, et al., Chem. Eng. J. 384 (2020) 123259.
doi: 10.1016/j.cej.2019.123259
X. Yang, Z. Chen, J. Xu, et al., ACS Appl. Mater. Interfaces 7 (2015) 15285–15293.
doi: 10.1021/acsami.5b02649
W. Li, X. Wang, M. Li, et al., Appl. Catal. B: Environ. 268 (2020) 118384.
doi: 10.1016/j.apcatb.2019.118384
C. Bai, J. Bi, J. Wu, Y. Han, X. Zhang, New J. Chem. 42 (2018) 16005–16012.
doi: 10.1039/c8nj02991a
D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Appl. Catal. B: Environ. 231 (2018) 368–380.
doi: 10.1016/j.apcatb.2018.03.036
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019