Review of MXenes as a component in smart textiles and an adsorbent for textile wastewater remediation
-
* Corresponding author.
E-mail address: kaniz.farhana@ae.butex.edu.bd (K. Farhana).
Citation: Kaniz Farhana, Kumaran Kadirgama, Abu Shadate Faisal Mahamude, Rajan Jose. Review of MXenes as a component in smart textiles and an adsorbent for textile wastewater remediation[J]. Chinese Chemical Letters, ;2024, 35(2): 108533. doi: 10.1016/j.cclet.2023.108533
S. Ramakrishna, R. Jose, Sci. Total Environ. 806 (2022) 151208.
doi: 10.1016/j.scitotenv.2021.151208
A. Fakharuddin, H. Li, F. Di Giacomo, et al., Adv. Energy Mater. 11 (2021) 2101443.
doi: 10.1002/aenm.202101443
Q. Huang, D. Wang, Z.J.A.E.M. Zheng, Adv. Energy Mater. 6 (2016) 1600783.
doi: 10.1002/aenm.201600783
K. Farhana, M. Syduzzaman, D. Yeasmin, J. Textile Sci. Technol. 5 (2015) 75–84.
doi: 10.4236/jtst.2015.12008
A. Şen, Int. J. Product. Econ. 114 (2008) 571–593.
doi: 10.1016/j.ijpe.2007.05.022
A. Maziz, A. Concas, A. Khaldi, et al., Sci. Adv. 3 (2017) e1600327.
doi: 10.1126/sciadv.1600327
M. Stoppa, A.J. Chiolerio, Sensors 14 (2014) 11957–11992.
doi: 10.3390/s140711957
M. Syduzzaman, S.U. Patwary, K. Farhana, et al., J. Textile Sci. Eng. 5 (2015) 1000181.
L. Xue, W. Fan, Y. Yu, et al., Adv. Fiber Mater. 3 (2021) 239–250.
doi: 10.1007/s42765-021-00081-z
K. Farhana, M. Syduzzaman, D. Yeasmin, J. Adv. Eng. Technol. 3 (2015) 1–7.
D.P. Dubal, N.R. Chodankar, D.H. Kim, et al., Chem. Soc. Rev. 47 (2018) 2065–2129.
doi: 10.1039/c7cs00505a
K. Chaudhary, B. Kandasubramanian, Ind. Eng. Chem. Res. 61 (2022) 3789–3816.
doi: 10.1021/acs.iecr.1c04602
G. Chen, X. Xiao, X. Zhao, et al., Chem. Rev. 122 (2022) 3259–3291.
doi: 10.1021/acs.chemrev.1c00502
S. Cho, T. Chang, T. Yu, et al., Biosensors 12 (2022) 222.
doi: 10.3390/bios12040222
A. Libanori, G. Chen, X. Zhao, et al., Nat. Electron. 5 (2022) 142–156.
doi: 10.1038/s41928-022-00723-z
S. Ramakrishna, R. Jose, P.S. Archana, et al., J. Mater. Sci. 45 (2010) 6283–6312.
doi: 10.1007/s10853-010-4509-1
A.M. Al-Dhahebi, J. Ling, S.G. Krishnan, et al., Appl. Phys. Rev. 9 (2022) 011319.
doi: 10.1063/5.0077959
A. Balilonda, Q. Li, X. Bian, et al., Chem. Eng. J. 410 (2021) 128384.
doi: 10.1016/j.cej.2020.128384
A. Forouzan, M. Yousefzadeh, M. Latifi, et al., Macromol. Mater. Eng. 306 (2021) 2000510.
doi: 10.1002/mame.202000510
J. Feng, E. Hontañón, M. Blanes, et al., ACS Appl. Mater. Interfaces 8 (2016) 14756–14765.
doi: 10.1021/acsami.6b03632
H. Morris, R. Murray, Textile Progress 52 (2020) 1–127.
doi: 10.1080/00405167.2020.1824468
M. Joshi, A. Bhattacharyya, Textile Progress 43 (2011) 155–233.
doi: 10.1080/00405167.2011.570027
F. De Falco, V. Guarino, G. Gentile, et al., J. Colloid Interf. Sci. 541 (2019) 367–375.
doi: 10.1016/j.jcis.2019.01.086
T. Makowski, D. Kowalczyk, W. Fortuniak, et al., Cellulose 22 (2015) 3063–3075.
doi: 10.1007/s10570-015-0725-9
L. Xie, B. Shan, H. Xu, et al., ACS Appl. Nano Mater. 1 (2018) 2406–2413.
doi: 10.1021/acsanm.8b00591
M.P. Gashti, E. Pakdel, F. Alimohammadi, Active Coatings for Smart Textiles, Elsevier, 2016, pp. 243–268.
M. Joshi, B. Adak, Advances in nanotechnology based functional, smart and intelligent textiles: a review, Compr. Nanosci. Nanotechnol., 2nd ed., 2019.
H. Yang, B. Yu, P. Song, et al., Compos. Part B: Eng. 176 (2019) 107185.
doi: 10.1016/j.compositesb.2019.107185
U. Sharma, S. Karazhanov, R. Jose, et al., J. Mater. Chem. A 10 (2022) 8626–8655.
doi: 10.1039/d1ta10918a
H. Liu, K. Sun, X. Shi, et al., Energy Stor. Mater. 42 (2021) 845–870.
Y. Feng, F. Zhou, Q. Deng, et al., Ceram. Int. 46 (2020) 8320–8327.
doi: 10.1016/j.ceramint.2019.12.063
F. Du, H. Tang, L. Pan, et al., Electrochim. Acta 235 (2017) 690–699.
doi: 10.1016/j.electacta.2017.03.153
M. Naguib, V.N. Mochalin, M.W. Barsoum, et al., Adv. Mater. 26 (2014) 992–1005.
doi: 10.1002/adma.201304138
D. Dhamodharan, V. Dhinakaran, H.S. Byun, Carbon 192 (2022) 366–383.
doi: 10.1016/j.carbon.2022.03.004
M. Mozafari, M.J. Soroush, Mater. Adv. 2 (2021) 7277–7307.
doi: 10.1039/d1ma00625h
J. Azadmanjiri, T.N. Reddy, B. Khezri, et al., J. Mater. Chem. A 10 (2022) 4533–4557.
doi: 10.1039/d1ta09334g
M. Tomy, A. Ambika Rajappan, V. Vm, et al., Energy Fuels 35 (2021) 19881–19900.
doi: 10.1021/acs.energyfuels.1c02743
C. Couly, M. Alhabeb, K.L. Van Aken, et al., Adv. Electron. Mater. 4 (2018) 1700339.
doi: 10.1002/aelm.201700339
S. Li, L. Wang, J. Peng, et al., Chem. Eng. J. 366 (2019) 192–199.
doi: 10.1016/j.cej.2019.02.056
T.L. Tan, H.M. Jin, M.B. Sullivan, et al., ACS Nano 11 (2017) 4407–4418.
doi: 10.1021/acsnano.6b08227
A. Ahmed, M.M. Hossain, B. Adak, et al., Chem. Mater. 32 (2020) 10296–10320.
doi: 10.1021/acs.chemmater.0c03392
K. Maleski, C.E. Ren, M.Q. Zhao, et al., ACS Appl. Mater. Interfaces 10 (2018) 24491–24498.
doi: 10.1021/acsami.8b04662
A. Levitt, J. Zhang, G. Dion, et al., Adv. Funct. Mater. 30 (2020) 2000739.
doi: 10.1002/adfm.202000739
S. Uzun, S. Seyedin, A.L. Stoltzfus, et al., Adv. Funct. Mater. 29 (2019) 1905015.
doi: 10.1002/adfm.201905015
J. Zhang, N. Kong, S. Uzun, et al., Adv. Mater. 32 (2020) 2001093.
doi: 10.1002/adma.202001093
K. Maleski, V.N. Mochalin, Y.J. Gogotsi, Chem. Mater. 29 (2017) 1632–1640.
doi: 10.1021/acs.chemmater.6b04830
Q. Zhang, H. Lai, R. Fan, et al., ACS Nano 15 (2021) 5249–5262.
doi: 10.1021/acsnano.0c10671
X. Sui, Z. Yuan, Y. Yu, et al., Small 16 (2020) 2003400.
doi: 10.1002/smll.202003400
V. Natu, M. Sokol, L. Verger, et al., J. Phys. Chem. C 122 (2018) 27745–27753.
doi: 10.1021/acs.jpcc.8b08860
J. Orangi, F. Hamade, V.A. Davis, et al., ACS Nano 14 (2019) 640–650.
L. Liu, R. Guo, J. Gao, et al., Compos. Commun. 30 (2022) 101094.
doi: 10.1016/j.coco.2022.101094
S. Ramakrishna, R. Jose, Matter 5 (2022) 4097–4099.
doi: 10.1016/j.matt.2022.11.009
J. Yin, F. Zhan, T. Jiao, et al., Chin. Chem. Lett. 31 (2020) 992–995.
doi: 10.1016/j.cclet.2019.08.047
K. Li, T. Jiao, R. Xing, et al., Sci. China Mater. 61 (2018) 728–736.
doi: 10.1007/s40843-017-9196-8
L. Damptey, B.N. Jaato, C.S. Ribeiro, et al., Glob. Challenges 6 (2022) 2100120.
doi: 10.1002/gch2.202100120
G. Zeng, K. Wei, H. Zhang, et al., Appl. Clay Sci. 211 (2021) 106177.
doi: 10.1016/j.clay.2021.106177
M. Ahmaruzzaman, RSC Adv. 12 (2022) 34766–34789.
doi: 10.1039/d2ra05530a
H. Assad, I. Fatma, A. Kumar, et al., Chemosphere (2022) 134221.
M. Ahmaruzzaman, Inorg. Chem. Commun. 143 (2022) 109705.
doi: 10.1016/j.inoche.2022.109705
M. Jeon, B.-M. Jun, S. Kim, et al., Chemosphere 261 (2020) 127781.
doi: 10.1016/j.chemosphere.2020.127781
Y. Ibrahim, A. Kassab, K. Eid, et al., Nanomaterials 10 (2020) 885.
doi: 10.3390/nano10050885
Y. Li, R. Dai, H. Zhou, et al., ACS Appl. Nano Mater. 4 (2021) 6328–6336.
doi: 10.1021/acsanm.1c01217
X. Wu, M. Ding, H. Xu, et al., ACS Nano 14 (2020) 9125–9135.
doi: 10.1021/acsnano.0c04471
Y. Ibrahim, M. Meslam, K. Eid, et al., Sep. Purif. Technol. 282 (2022) 120083.
doi: 10.1016/j.seppur.2021.120083
H. Lei, Z. Hao, K. Chen, et al., J. Phys. Chem. Lett. 11 (2020) 4253–4260.
doi: 10.1021/acs.jpclett.0c00973
N. Hemanth, B.J. Kandasubramanian, Chem. Eng. J. 392 (2020) 123678.
doi: 10.1016/j.cej.2019.123678
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.
doi: 10.1002/adma.201102306
P.O. Persson, J. Rosen, Curr. Opin. Solid State Mater. Sci. 23 (2019) 100774.
doi: 10.1016/j.cossms.2019.100774
A. Sarycheva, Y. Gogotsi, Chem. Mater. 32 (2020) 3480–3488.
doi: 10.1021/acs.chemmater.0c00359
M.W. Barsoum, M. Radovic, Ann. Rev. Mater. Res. 41 (2011) 195–227.
doi: 10.1146/annurev-matsci-062910-100448
B. Anasori, M.R. Lukatskaya, Y.J. Gogotsi, Nat. Rev. Mater. 2 (2017) 1–17.
A. Sreedhar, J.S.J. Noh, Solar Energy 222 (2021) 48–73.
doi: 10.1016/j.solener.2021.05.010
M. Magnuson, M. Mattesini, Thin Solid Films 621 (2017) 108–130.
doi: 10.1016/j.tsf.2016.11.005
F. Jamil, H.M. Ali, M.M.J. Janjua, J. Energy Storage 35 (2021) 102322.
doi: 10.1016/j.est.2021.102322
M. Alhabeb, K. Maleski, B. Anasori, et al., Chem. Mater. 29 (2017) 7633–7644.
doi: 10.1021/acs.chemmater.7b02847
M. Sajid, Anal. Chim. Acta 1143 (2021) 267–280.
doi: 10.1016/j.aca.2020.08.063
X. Zhan, C. Si, J. Zhou, et al., Nanoscale Horiz. 5 (2020) 235–258.
doi: 10.1039/c9nh00571d
O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Nat. Commun. 4 (2013) 1716.
doi: 10.1038/ncomms2664
L. Verger, C. Xu, V. Natu, et al., Curr. Opin. Solid State Mater. Sci. 23 (2019) 149–163.
doi: 10.1016/j.cossms.2019.02.001
J. Halim, S. Kota, M.R. Lukatskaya, et al., Adv. Funct. Mater. 26 (2016) 3118–3127.
doi: 10.1002/adfm.201505328
O. Salim, K. Mahmoud, K. Pant, et al., Mater. Today Chem. 14 (2019) 100191.
doi: 10.1016/j.mtchem.2019.08.010
Y. Li, H. Shao, Z. Lin, et al., Nat. Mater. 19 (2020) 894–899.
doi: 10.1038/s41563-020-0657-0
Q. Xu, S. Chen, J. Xu, et al., J. Electroanal. Chem. 880 (2021) 114765.
doi: 10.1016/j.jelechem.2020.114765
Y. Liu, J. Yu, D. Guo, et al., J. Alloys Compd. 815 (2020) 152403.
doi: 10.1016/j.jallcom.2019.152403
C. Prasad, X. Yang, Q. Liu, et al., J. Indust. Eng. Chem. 85 (2020) 1–33.
doi: 10.1016/j.jiec.2019.12.003
S. Jolly, M.P. Paranthaman, M. Naguib, Mater. Today Adv. 10 (2021) 100139.
doi: 10.1016/j.mtadv.2021.100139
A. Tanvir, P. Sobolčiak, A. Popelka, et al., Polymers 11 (2019) 1272.
doi: 10.3390/polym11081272
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, et al., Nature 516 (2014) 78–81.
doi: 10.1038/nature13970
J. Yin, K. Wei, J. Zhang, et al., Cell Rep. Phys. Sci. 3 (2022) 100893.
doi: 10.1016/j.xcrp.2022.100893
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, et al., Adv. Electron. Mater. 2 (2016) 1600255.
doi: 10.1002/aelm.201600255
H. Wang, Y. Wu, J. Zhang, et al., Mater. Lett. 160 (2015) 537–540.
doi: 10.1016/j.matlet.2015.08.046
A.S. Zeraati, S.A. Mirkhani, P. Sun, et al., Nanoscale 13 (2021) 3572–3580.
doi: 10.1039/D0NR06671K
M. Hu, H. Zhang, T. Hu, et al., Chem. Soc. Rev. 49 (2020) 6666–6693.
doi: 10.1039/d0cs00175a
R. Ma, Z. Chen, D. Zhao, et al., J. Mater. Chem. A 9 (2021) 11501–11529.
doi: 10.1039/d1ta00681a
Q. Zhu, J. Li, P. Simon, et al., Energy Stor. Mater. 35 (2021) 630–660.
L. Li, D. Zhang, J. Deng, et al., Sustain. Energy Fuels 5 (2021) 3278–3291.
doi: 10.1039/d1se00448d
W. Meng, X. Liu, H. Song, et al., Nano Today 40 (2021) 101273.
doi: 10.1016/j.nantod.2021.101273
J. Nan, X. Guo, J. Xiao, et al., Small 17 (2021) 1902085.
doi: 10.1002/smll.201902085
K. Nasrin, V. Sudharshan, K. Subramani, et al., Adv. Funct. Mater. 32 (2022) 2110267.
doi: 10.1002/adfm.202110267
A.M. Al-Dhahebi, R. Jose, M. Mustapha, et al., Food Chem. 390 (2022) 133105.
doi: 10.1016/j.foodchem.2022.133105
X. Wang, X. Wang, J. Yin, et al., Compos. Part B: Eng. 241 (2022) 110052.
doi: 10.1016/j.compositesb.2022.110052
J. Pang, R.G. Mendes, A. Bachmatiuk, et al., Chem. Soc. Rev. 48 (2019) 72–133.
doi: 10.1039/c8cs00324f
Q. Zhang, Z. Tian, P. Zhang, et al., Mater. Today Commun. 31 (2022) 103466.
doi: 10.1016/j.mtcomm.2022.103466
Y. Bai, K. Zhou, N. Srikanth, et al., RSC Adv. 6 (2016) 35731–35739.
doi: 10.1039/C6RA03090D
M. Naguib, T. Saito, S. Lai, et al., RSC Adv. 6 (2016) 72069–72073.
doi: 10.1039/C6RA10384G
I. Persson, L.Å. Näslund, J. Halim, et al., 2D Mater. 5 (2017) 015002.
doi: 10.1088/2053-1583/aa89cd
Z. Fu, H. Zhang, C. Si, et al., J. Phys. Chem. C 122 (2018) 4710–4722.
doi: 10.1021/acs.jpcc.8b00142
V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi, Nanotechnology 26 (2015) 265705.
doi: 10.1088/0957-4484/26/26/265705
S. Lu, W. Ren, J. He, et al., Phys. Rev. B 105 (2022) 165301.
doi: 10.1103/PhysRevB.105.165301
A. Lipatov, H. Lu, M. Alhabeb, et al., Sci. Adv. 4 (2018) eaat0491.
doi: 10.1126/sciadv.aat0491
Y. Zhou, K. Maleski, B. Anasori, et al., ACS Nano 14 (2020) 3576–3586.
doi: 10.1021/acsnano.9b10066
Y. Dai, X. Wu, L. Li, et al., J. Mater. Chem. A 10 (2022) 11375–11385.
doi: 10.1039/d2ta01388f
A. Ahmed, S. Sharma, B. Adak, et al., InfoMat 4 (2022) e12295.
doi: 10.1002/inf2.12295
Z. Fan, Y. Yang, H. Ma, et al., Carbon 186 (2022) 150–159.
doi: 10.1016/j.carbon.2021.10.021
F.H. Saboor, S. Hadian-Gazvini, S. Shahsavari, Applications of carbon-based conductive nanomaterials on e-textiles, in: Nanosensors and Nanodevices for Smart Multifunctional Textiles, Elsevier, 2021, pp. 245–265.
M.O. Faruk, A. Ahmed, M.A. Jalil, et al., Appl. Mater. Today 23 (2021) 101025.
doi: 10.1016/j.apmt.2021.101025
Z. Zhang, H. Cao, Y. Quan, et al., Polymers 14 (2022) 1213.
doi: 10.3390/polym14061213
A. Bhat, S. Anwer, K.S. Bhat, et al., NPJ 2D Mater. Appl. 5 (2021) 1–21.
doi: 10.1038/s41699-020-00190-0
A. Levitt, D. Hegh, P. Phillips, et al., Mater. Today 34 (2020) 17–29.
doi: 10.1016/j.mattod.2020.02.005
S. Qin, K.A.S. Usman, D. Hegh, et al., ACS Appl. Mater. Interfaces 13 (2021) 36655–36669.
doi: 10.1021/acsami.1c08985
Z. Guo, Y. Li, Z. Lu, W. Liu, J. Phys.: Conf. Ser. 1790 (2021) 012066.
doi: 10.1088/1742-6596/1790/1/012066
Z. Wu, L. Wei, S. Tang, et al., ACS Nano 15 (2021) 18880–18894.
doi: 10.1021/acsnano.1c08239
S. Uzun, M. Schelling, K. Hantanasirisakul, et al., Small 17 (2021) 2006376.
doi: 10.1002/smll.202006376
Z. Ling, C.E. Ren, M.Q. Zhao, et al., Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 16676–16681.
doi: 10.1073/pnas.1414215111
M. Pourmohammad, J. Ling, M. Yousefzadeh, et al., Energy Fuels 36 (2022) 15268–15278.
doi: 10.1021/acs.energyfuels.2c03505
K. Singha, J. Kumar, P.J. Pandit, Mater. Today: Proc. 16 (2019) 1518–1523.
doi: 10.1016/j.matpr.2019.05.334
G. Cho, S. Lee, J. Cho, Int. J. Hum.-Comput. Interact. 25 (2009) 582–617.
doi: 10.1080/10447310902997744
T. Takagi, J. Intell. Mater. Syst. Struct. 1 (1990) 149–156.
doi: 10.1177/1045389X9000100201
D.C. Çelikel, Smart e-textile materials, in: N. Tasaltin, P.S. Nnamchi, S. Saud (Eds.), Advanced Functional Materials Eds., IntechOpen, 2020, pp. 1–16, doi:
G. Stylios, Assemb. Autom. 16 (1996) 40–44.
R.B. Katragadda, Y. Xu, Sens. Actuators A: Phys. 143 (2008) 169–174.
doi: 10.1016/j.sna.2007.08.013
S. Arora, A. Ghosh, Evolution of soft body armor, in: S. Ul-Islam, B.S. Butola (Eds.), Advanced Textile Engineering Materials, John Wiley & Sons, 2018, pp. 499–541.
M. Joshi, A. Bhattacharyya, S.W. Ali, Indian J. Fibre Textile Res. 33 (2008) 304–317.
B. Pal, J.B. Matsoso, A.K. Parameswaran, et al., Electrochim. Acta 415 (2022) 140239.
doi: 10.1016/j.electacta.2022.140239
K. Cherenack, K. Van OS, L. Van Pieterson, Photonics applied: wearable photonics: smart photonic textiles begin to weave their magic, Laser Focus world, 2012.
A.K. Yetisen, H. Qu, A. Manbachi, et al., ACS Nano 10 (2016) 3042–3068.
doi: 10.1021/acsnano.5b08176
B.H. Dong, J.P. Hinestroza, ACS Appl. Mater. Interfaces 1 (2009) 797–803.
doi: 10.1021/am800225j
H. Esmaeilzadeh, M. Rivard, E. Arzi, et al., Opt. Express 23 (2015) 14981–14992.
doi: 10.1364/OE.23.014981
J. Hu, H. Meng, G. Li, et al., Smart Mater. Struct. 21 (2012) 053001.
doi: 10.1088/0964-1726/21/5/053001
M. Cinquino, C.T. Prontera, M. Pugliese, et al., Micromachines 12 (2021) 652.
doi: 10.3390/mi12060652
A. Lendlein, S.J. Kelch, Angew. Chem. Int. Ed. 41 (2002) 2034–2057.
doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
S. Mondal, Appl. Thermal Eng. 28 (2008) 1536–1550.
doi: 10.1016/j.applthermaleng.2007.08.009
C. Kaviarasu, D.J. Prakash, J. Eng. Sci. Technol. Rev. 9 (2016) 26–36.
doi: 10.25103/jestr.094.05
L.M. Castano, A.B. Flatau, Smart Mater. Struct. 23 (2014) 053001.
doi: 10.1088/0964-1726/23/5/053001
M. Yousaf, H.T.H. Shi, Y. Wang, et al., Adv. Energy Mater. 6 (2016) 1600490.
doi: 10.1002/aenm.201600490
J. Tabor, K. Chatterjee, T.K. Ghosh, Adv. Mater. Technol. 5 (2020) 1901155.
doi: 10.1002/admt.201901155
S. Pan, H. Lin, J. Deng, et al., Adv. Energy Mater. 5 (2015) 1401438.
doi: 10.1002/aenm.201401438
V. Koncar, Introduction to smart textiles and their applications, Smart Textiles and Their Applications, Elsevier, 2016, pp. 1–8.
S.S. Shah, M.N. Shaikh, M.Y. Khan, et al., Chem. Rec. 21 (2021) 1631–1665.
doi: 10.1002/tcr.202100135
T. Li, L. Chen, X. Yang, et al., J. Mater. Chem. C 7 (2019) 1022–1027.
doi: 10.1039/c8tc04893b
J. Yan, Y. Ma, C. Zhang, et al., RSC Adv. 8 (2018) 39742–39748.
doi: 10.1039/c8ra08403c
X. Zheng, W. Nie, Q. Hu, et al., Mater. Design 200 (2021) 109442.
doi: 10.1016/j.matdes.2020.109442
G. Yin, Y. Wang, W. Wang, et al., Colloids Surf. A: Physicochem. Eng. Aspects 601 (2020) 125047.
doi: 10.1016/j.colsurfa.2020.125047
S. Wang, X. Du, Y. Luo, et al., Chem. Eng. J. 408 (2021) 127363.
doi: 10.1016/j.cej.2020.127363
W.T. Cao, C. Ma, D.S. Mao, et al., Adv. Funct. Mater. 29 (2019) 1905898.
doi: 10.1002/adfm.201905898
L.X. Liu, W. Chen, H.B. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1905197.
doi: 10.1002/adfm.201905197
M. Hu, T. Hu, R. Cheng, et al., J. Energy Chem. 27 (2018) 161–166.
doi: 10.1016/j.jechem.2017.10.030
X. Li, J. Hao, R. Liu, et al., Energy Storage Mater. 33 (2020) 62–70.
doi: 10.1016/j.jrid.2020.05.003
W. Shao, M. Tebyetekerwa, I. Marriam, et al., J. Power Sources 396 (2018) 683–690.
doi: 10.1016/j.jpowsour.2018.06.084
Q.W. Wang, H.B. Zhang, J. Liu, et al., Adv. Funct. Mater. 29 (2019) 1806819.
doi: 10.1002/adfm.201806819
L. Wang, M. Tian, Y. Zhang, et al., J. Mater. Sci. 55 (2020) 6187–6194.
doi: 10.1007/s10853-020-04425-9
S. Seyedin, S. Uzun, A. Levitt, et al., Adv. Funct. Mater. 30 (2020) 1910504.
doi: 10.1002/adfm.201910504
J. Luo, S. Gao, H. Luo, et al., Chem. Eng. J. 406 (2021) 126898.
doi: 10.1016/j.cej.2020.126898
W. He, M. Sohn, R. Ma, et al., Nano Energy 78 (2020) 105383.
doi: 10.1016/j.nanoen.2020.105383
I. Ihsanullah, A. Jamal, M. Ilyas, et al., J. Water Process Eng. 38 (2020) 101680.
doi: 10.1016/j.jwpe.2020.101680
N.Y. Donkadokula, A.K. Kola, I. Naz, et al., Rev. Environ. Sci. Bio/Technol. 19 (2020) 543–560.
doi: 10.1007/s11157-020-09543-z
B. Shi, G. Li, D. Wang, et al., J. Hazard. Mater. 143 (2007) 567–574.
doi: 10.1016/j.jhazmat.2006.09.076
C. Yang, W. Xu, Y. Nan, et al., J. Colloid Interf. Sci. 562 (2020) 589–597.
doi: 10.1016/j.jcis.2019.11.075
I. Arslan, I.J. Balcioglu, Dyes Pigments 47 (2000) 207–218.
doi: 10.1016/S0143-7208(00)00082-6
X. Quan, C. Ye, Y. Xiong, et al., J. Hazard. Mater. 178 (2010) 326–332.
doi: 10.1016/j.jhazmat.2010.01.083
S. Karcher, A. Kornmüller, M.J. Jekel, Water Res. 36 (2002) 4717–4724.
doi: 10.1016/S0043-1354(02)00195-1
H.D. Raval, P.S. Rana, S. Maiti, RSC Adv. 5 (2015) 6687–6694.
doi: 10.1039/C4RA12610F
A. Regti, M.R. Laamari, S.E. Stiriba, et al., J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017) 10–18.
S. Rajendra, M. Khan, F. Gracia, et al., Sci. Rep. 6 (2016) 31641.
doi: 10.1038/srep31641
J. Han, B.M. Jun, J. Heo, et al., Ceram. Int. 45 (2019) 19247–19256.
doi: 10.1016/j.ceramint.2019.06.173
X.W. Liu, H.Q. Yu, B.J. Ni, G.P. Sheng, Adv. Biochem. Eng. Biotechnol. 113 (2009) 275–303.
doi: 10.1007/10_2008_29
F.A. Al-Khaldi, B. Abusharkh, M. Khaled, et al., J. Mol. Liquids 204 (2015) 255–263.
doi: 10.1016/j.molliq.2015.01.033
N.I. Blaisi, M. Zubair, S. Ali, et al., Environ. Sci. Pollut. Res. 25 (2018) 34319–34331.
doi: 10.1007/s11356-018-3367-2
I. Ali, I. Burakova, E. Galunin, et al., ACS Omega 4 (2019) 19293–19306.
doi: 10.1021/acsomega.9b02669
R. Kishor, D. Purchase, G.D. Saratale, et al., J. Environ. Chem. Eng. 9 (2021) 105012.
doi: 10.1016/j.jece.2020.105012
K. Rasool, R.P. Pandey, P.A. Rasheed, et al., Mater. Today 30 (2019) 80–102.
doi: 10.1016/j.mattod.2019.05.017
O. Mashtalir, K.M. Cook, V.N. Mochalin, et al., J. Mater. Chem. A 2 (2014) 14334–14338.
doi: 10.1039/C4TA02638A
Y. Jin, Y. Fan, X. Meng, et al., Processes 7 (2019) 751.
doi: 10.3390/pr7100751
Y. Xia, T.S. Mathis, M.Q. Zhao, et al., Nature 557 (2018) 409–412.
doi: 10.1038/s41586-018-0109-z
A.S. Levitt, M. Alhabeb, C.B. Hatter, et al., J. Mater. Chem. A 7 (2019) 269–277.
doi: 10.1039/c8ta09810g
R. Rashid, I. Shafiq, P. Akhter, et al., Environ. Sci. Pollut. Res. 28 (2021) 9050–9066.
doi: 10.1007/s11356-021-12395-x
E. Şayan, Chem. Eng. J. 119 (2006) 175–181.
doi: 10.1016/j.cej.2006.03.025
L. Niazi, A. Lashanizadegan, H.J. Sharififard, J. Clean. Prod. 185 (2018) 554–561.
doi: 10.1016/j.jclepro.2018.03.026
Y. Yang, J. Yang, Y. Du, et al., ACS Omega 4 (2019) 17741–17751.
doi: 10.1021/acsomega.9b02180
K. Vikrant, B.S. Giri, N. Raza, et al., Bioresource Technol. 253 (2018) 355–367.
doi: 10.1016/j.biortech.2018.01.029
M. Kaur, N. Kaur, K. Jeet, et al., Ceram. Int. 41 (2015) 13739–13750.
doi: 10.1016/j.ceramint.2015.08.040
A. Ayati, M.N. Shahrak, B. Tanhaei, et al., Chemosphere 160 (2016) 30–44.
doi: 10.1016/j.chemosphere.2016.06.065
I. Ihsanullah, Chem. Eng. J. 388 (2020) 124340.
doi: 10.1016/j.cej.2020.124340
M.M. Tunesi, R.A. Soomro, X. Han, et al., Nano Converg. 8 (2021) 1–19.
doi: 10.1109/cleo/europe-eqec52157.2021.9542223
N.A. Bakar, N. Othman, Z.M. Yunus, et al., Environ. Technol. Innovat. 22 (2021) 101445.
doi: 10.1016/j.eti.2021.101445
O. Agboola, O.S.I. Fayomi, A. Ayodeji, et al., Membranes 11 (2021) 139.
doi: 10.3390/membranes11020139
Y. Dong, D. Sang, C. He, et al., RSC Adv. 9 (2019) 29015–29022.
doi: 10.1039/c9ra05251h
A. Kong, Y. Sun, M. Peng, et al., Colloids Surf. A: Physicochem. Eng. Aspects 617 (2021) 126388.
doi: 10.1016/j.colsurfa.2021.126388
A. Shahzad, K. Rasool, W. Miran, et al., J. Hazard. Mater. 344 (2018) 811–818.
doi: 10.1016/j.jhazmat.2017.11.026
K.N. Zhang, C.Z. Wang, Q.F. Lü, et al., Int. J. Biol. Macromol. 209 (2022) 680–691.
doi: 10.1016/j.ijbiomac.2022.04.036
B.M. Jun, C.M. Park, J. Heo, et al., J. Environ. Manag. 256 (2020) 109940.
doi: 10.1016/j.jenvman.2019.109940
C. Cai, R. Wang, S. Liu, et al., Colloids Surf. A: Physicochem. Eng. Aspects 589 (2020) 124468.
doi: 10.1016/j.colsurfa.2020.124468
B.M. Jun, S. Kim, H. Rho, et al., Chemosphere 254 (2020) 126827.
doi: 10.1016/j.chemosphere.2020.126827
P. Karthikeyan, K. Ramkumar, K. Pandi, et al., Ceram. Int. 47 (2021) 3692–3698.
doi: 10.1016/j.ceramint.2020.09.221
Y. Feng, H. Wang, J. Xu, et al., J. Hazard. Mater. 416 (2021) 125777.
doi: 10.1016/j.jhazmat.2021.125777
B.M. Jun, J. Heo, N. Taheri-Qazvini, et al., Ceram. Int. 46 (2020) 2960–2968.
doi: 10.1016/j.ceramint.2019.09.293
Y. Cui, D. Zhang, K. Shen, et al., J. Environ. Chem. Eng. 8 (2020) 104369.
doi: 10.1016/j.jece.2020.104369
Y. Wang, Q. Qi, J. Fan, et al., Sep. Purif. Technol. 254 (2021) 117615.
doi: 10.1016/j.seppur.2020.117615
B.M. Jun, J. Han, C.M. Park, et al., Ultrason. Sonochem. 64 (2020) 104993.
doi: 10.1016/j.ultsonch.2020.104993
B.M. Jun, S. Kim, Y. Kim, et al., Chemosphere 231 (2019) 82–92.
doi: 10.1016/j.chemosphere.2019.05.076
S.M. Mirsoleimani-azizi, P. Setoodeh, S. Zeinali, et al., J. Environ. Chem. Eng. 6 (2018) 6118–6130.
doi: 10.1016/j.jece.2018.09.017
Y. Qu, C. Zhang, F. Li, et al., J. Hazard. Mater. 169 (2009) 146–152.
doi: 10.1016/j.jhazmat.2009.03.063
K.T. Wong, Y. Yoon, S.A. Snyder, et al., Chemosphere 152 (2016) 71–80.
doi: 10.3850/S238258121600003X
I. Langmuir, J. Am. Chem. Soc. 38 (1916) 2221–2295.
doi: 10.1021/ja02268a002
H. Freundlich, J. Phys. Chem. 57 (1906) 1100–1107.
T. Sheela, Y.A.J. Nayaka, Chem. Eng. J. 191 (2012) 123–131.
doi: 10.1016/j.cej.2012.02.080
Y. Wu, X. Li, H. Zhao, et al., Chem. Eng. J. 418 (2021) 129296.
doi: 10.1016/j.cej.2021.129296
S. Benkhaya, S. M'rabet, A. El Harfi, Inorg. Chem. Commun. 115 (2020) 107891.
doi: 10.1016/j.inoche.2020.107891
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Dan Luo , Jinya Tian , Jianqiao Zhou , Xiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444
Mengyuan Li , Xitong Ren , Yanmei Gao , Mengyao Mu , Shiping Zhu , Shufang Tian , Minghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324