Ultrathin ternary PtNiGa nanowires for enhanced oxygen reduction reaction
-
* Corresponding authors.
E-mail addresses: yipinghu@uestc.edu.cn (Y. Hu), qinyue@uestc.edu.cn (Q. Yue).
Citation:
Giday Fisseha, Yiping Hu, Yanan Yu, Shaojie Lu, Dongsheng Ma, Pei Nian, Zheng Wang, Qin Yue. Ultrathin ternary PtNiGa nanowires for enhanced oxygen reduction reaction[J]. Chinese Chemical Letters,
;2024, 35(2): 108445.
doi:
10.1016/j.cclet.2023.108445
D. Feng, Y. Dong, P. Nie, L. Zhang, Z.A. Qiao, Chem. Eng. J. 430 (2022) 132883.
doi: 10.1016/j.cej.2021.132883
Y. Song, Y. Peng, S. Yao, et al., Chin. Chem. Lett. 33 (2022) 1047–1050.
doi: 10.1016/j.cclet.2021.08.045
F. Guo, M. Zhang, S. Yi, et al., Nano Res. Energy 1 (2022) 9120027.
doi: 10.26599/NRE.2022.9120027
H. Jin, S. Zou, Q. Wen, et al., Chin. Chem. Lett. 34 (2023) 107441.
doi: 10.1016/j.cclet.2022.04.039
K. Wang, N. Li, Y. Yang, et al., Chin. Chem. Lett. 32 (2021) 3159–3163.
doi: 10.1016/j.cclet.2021.02.045
L. Zhao, J. Zhu, Y. Zheng, et al., Adv. Energy Mater. 12 (2022) 2102665.
doi: 10.1002/aenm.202102665
H. Xu, H. Shang, C. Wang, Y. Du, Adv. Funct. Mater. 30 (2020) 2006317.
doi: 10.1002/adfm.202006317
R. Chen, T. Shu, F. Zhao, et al., Nano Res. 15 (2022) 9010–9018.
doi: 10.1007/s12274-022-4577-y
C. Chen, Y. Kang, Z. Huo, et al., Science 343 (2014) 1339–1343.
doi: 10.1126/science.1249061
S.M. Dull, O. Vinogradova, et al., ACS Appl. Energy Mater. 5 (2022) 8282–8291.
doi: 10.1021/acsaem.2c00816
K. Li, X. Li, H. Huang, et al., J. Am. Chem. Soc. 140 (2018) 16159–16167.
doi: 10.1021/jacs.8b08836
G. Nie, Z. Zhang, T. Wang, C. Wang, Z. Kou, ACS Appl. Mater. Interfaces 13 (2021) 37961–37978.
doi: 10.1021/acsami.1c08798
L. Chong, J. Wen, J. Kubal, et al., Science 362 (2018) 1276–1281.
doi: 10.1126/science.aau0630
V.R. Stamenkovic, B.S. Mun, M. Arenz, et al., Nat. Mater. 6 (2007) 241–247.
doi: 10.1038/nmat1840
T.H. Yang, J. Ahn, S. Shi, et al., Chem. Rev. 121 (2021) 796–833.
doi: 10.1021/acs.chemrev.0c00940
Z. Yang, L. Shang, X. Xiong, et al., Chem. Eur. J. 26 (2020) 4090–4096.
doi: 10.1002/chem.201904208
X. Huang, Z. Zhao, L. Cao, et al., Science 348 (2015) 1230–1234.
doi: 10.1126/science.aaa8765
M. Escudero-Escribano, P. Malacrida, M.H. Hansen, et al., Science 352 (2016) 73–76.
doi: 10.1126/science.aad8892
X. Wang, L. Figueroa-Cosme, X. Yang, et al., Nano Lett. 16 (2016) 1467–1471.
doi: 10.1021/acs.nanolett.5b05140
F. Kong, Z. Ren, M.N. Banis, et al., ACS Catal. 10 (2020) 4205–4214.
doi: 10.1021/acscatal.9b05133
M. Li, F. Tian, T. Lin, et al., Small Methods 5 (2021) 2100154.
doi: 10.1002/smtd.202100154
C. Wang, M. Chi, D. Li, et al., J. Am. Chem. Soc. 133 (2011) 14396–14403.
doi: 10.1021/ja2047655
H. Huang, K. Li, Z. Chen, et al., J. Am. Chem. Soc. 139 (2017) 8152–8159.
doi: 10.1021/jacs.7b01036
H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, J. Am. Chem. Soc. 135 (2013) 7130–7133.
doi: 10.1021/ja403041g
W. Zhang, Y. Yang, B. Huang, F. Lv, et al., Adv. Mater. 31 (2019) 1805833.
doi: 10.1002/adma.201805833
Z. Yao, Y. Yuan, T. Cheng, et al., Nano Lett. 21 (2021) 9354–9360.
doi: 10.1021/acs.nanolett.1c03805
L. Sahoo, R. Garg, K. Kaur, C.P. Vinod, U.K. Gautam, Nano Lett. 22 (2022) 246–254.
doi: 10.1021/acs.nanolett.1c03704
L. Gao, X. Li, Z. Yao, et al., J. Am. Chem. Soc. 141 (2019) 18083–18090.
doi: 10.1021/jacs.9b07238
Y. Li, F. Quan, L. Chen, et al., RSC Adv. 4 (2014) 1895–1899.
doi: 10.1039/C3RA46299D
J. Lim, H. Shin, M. Kim, et al., Nano Lett. 18 (2018) 2450–2458.
doi: 10.1021/acs.nanolett.8b00028
Y. Yu, F. Xia, C. Wang, et al., Nano Res. 15 (2022) 7868–7876.
doi: 10.1007/s12274-022-4432-1
R. Shen, X. Wu, X. Li, et al., ChemistrySelect 6 (2021) 3891–3896.
doi: 10.1002/slct.202101015
A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Chem. Soc. Rev. 50 (2021) 9817–9844.
doi: 10.1039/D1CS00330E
X.X. Wang, S. Hwang, Y.T. Pan, et al., Nano Lett. 18 (2018) 4163–4171.
doi: 10.1021/acs.nanolett.8b00978
Y. Yan, J.S. Du, K.D. Gilroy, et al., Adv. Mater. 29 (2017) 1605997.
doi: 10.1002/adma.201605997
V.B. Kumar, J. Sanetuntikul, P. Ganesan, et al., Electrochim. Acta 190 (2016) 659–667.
doi: 10.1016/j.electacta.2015.12.193
J. Lim, C. Jung, D. Hong, et al., J. Mater. Chem. A 10 (2022) 7399–7408.
doi: 10.1039/D2TA00127F
H.Y. Kim, T. Kwon, Y. Ha, et al., Nano Lett. 20 (2020) 7413–7421.
doi: 10.1021/acs.nanolett.0c02812
H. Ma, Z. Zheng, H. Zhao, et al., J. Mater. Chem. A 9 (2021) 23444–23450.
doi: 10.1039/D1TA07488A
P. Weber, D.J. Weber, C. Dosche, M. Oezaslan, ACS Catal. 12 (2022) 6394–6408.
doi: 10.1021/acscatal.2c00514
D. Liu, N. Yang, Q. Zeng, et al., Chin. Chem. Lett. 32 (2021) 3288–3297.
doi: 10.1016/j.cclet.2021.04.053
J. Guan, S. Yang, T. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 21899–21904.
doi: 10.1002/anie.202107437
Q. Shao, K. Lu, X. Huang, Small Methods 3 (2019) 1800545.
doi: 10.1002/smtd.201800545
Z. Yang, H. Yang, L. Shang, T. Zhang, Angew. Chem. Int. Ed. 61 (2022) e202113278.
doi: 10.1002/anie.202113278
B. Fang, X. Chu, X. Han, et al., Chem. Commun. 58 (2022) 13803–13806.
doi: 10.1039/D2CC05503A
D.A. Torelli, S.A. Francis, J.C. Crompton, et al., ACS Catal. 6 (2016) 2100–2104.
doi: 10.1021/acscatal.5b02888
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630