Ordered macroporous structured TiO2-based photocatalysts for CO2 reduction: A review
-
* Corresponding author.
E-mail address: weiyc@cup.edu.cn (Y. Wei).
Citation:
Yifei Li, Yuechang Wei, Wenjie He, Zhiling Tang, Jing Xiong, Zhen Zhao. Ordered macroporous structured TiO2-based photocatalysts for CO2 reduction: A review[J]. Chinese Chemical Letters,
;2023, 34(12): 108417.
doi:
10.1016/j.cclet.2023.108417
P. Chen, Y.X. Zhang, Y. Zhou, F. Dong, Nano Mater. Sci. 3 (2021) 344–367.
doi: 10.1016/j.nanoms.2021.05.003
W.H. Zhang, A.R. Mohamed, W.J. Ong, Angew. Chem. Int. Ed. 59 (2020) 22894–22915.
doi: 10.1002/anie.201914925
C.H.A. Tsang, K. Li, Y.X. Zeng, et al., Environ. Int. 125 (2019) 200–228.
doi: 10.1016/j.envint.2019.01.015
Y. Bao, J. Wang, Q. Wang, et al., Nanoscale 12 (2020) 2507–2514.
doi: 10.1039/c9nr09321d
W. Cui, J.Y. Li, F. Dong, ACS ES&T Engg. 2 (2022) 1103–1115.
doi: 10.1021/acsestengg.1c00503
X. Li, W. Wang, F. Dong, et al., ACS Catal. 11 (2021) 4739–4769.
doi: 10.1021/acscatal.0c05354
J.L. White, M.F. Baruch, J.E.P. Iii, et al., Chem. Rev. 115 (2015) 12888–12935.
doi: 10.1021/acs.chemrev.5b00370
S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358 (2015) 15–27.
doi: 10.1016/j.apsusc.2015.08.173
L.Z. Liu, S.B. Wang, H.W. Huang, Y.H. Zhang, T.Y. Ma, Nano Energy 75 (2020) 104959.
doi: 10.1016/j.nanoen.2020.104959
O. Ola, M.M. Maroto-Valer, J. Photochem. Photobiol. C: Photochem. Rev. 24 (2015) 16–42.
doi: 10.1016/j.jphotochemrev.2015.06.001
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
doi: 10.1002/anie.201207199
X. Li, J.Q. Wen, J.X. Low, Y.P. Fang, J.G. Yu, Sci. China Mater. 57 (2014) 70–100.
doi: 10.1007/s40843-014-0003-1
Z. Xiong, Z. Lei, C.C. Kuang, et al., Appl. Catal. B 202 (2017) 695–703.
doi: 10.1016/j.apcatb.2016.10.001
M. Wu, Y. Li, Z. Deng, B.L. Su, ChemSusChem 4 (2011) 1481–1488.
doi: 10.1002/cssc.201100082
H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol. C: Photochem. Rev. 15 (2013) 1–20.
doi: 10.1016/j.jphotochemrev.2012.10.001
W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Nanoscale 6 (2014) 1946–2008.
doi: 10.1039/c3nr04655a
M. Sagir, M.B. Tahir, M. Rafique, M.S. Rafique, T. Nawaz, Nanotechnol. Photocatal. Environ. Appl. 10 (2020) 159–189.
C.G. Barraclough, J. Lewis, R.S. Nyholm, J. Chem. Soc. 173 (1959) 3552–3555.
S.J. Xie, Q.H. Zhang, G.D. Liu, Y. Wang, Chem. Commun. 52 (2016) 35–59.
doi: 10.1039/C5CC07613G
A. Sarkar, E. Gracia-Espino, T. Wågberg, et al., Nano Res. 9 (2016) 1–13.
doi: 10.21843/reas/2015/1-8/108322
J. Wu, H.W. Lu, X.L. Zhang, et al., Chem. Commun. 52 (2016) 5027–5029.
doi: 10.1039/C6CC00772D
A.J. Cowan, J.R. Durrant, Chem. Soc. Rev. 42 (2013) 2281–2293.
doi: 10.1039/C2CS35305A
K. Li, X. An, K.H. Park, M. Khraisheh, J. Tang, Catal. Today 224 (2014) 3–12.
doi: 10.1016/j.cattod.2013.12.006
R. Camarillo, S. Tostón, F. Martínez, C. Jiménez, J. Rincón, J. Chem. 92 (2017) 1710–1720.
doi: 10.1002/jctb.5169
X. Li, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603–2636.
doi: 10.1039/C5CS00838G
J.W. Fu, B.C. Zhu, C.J. Jiang, et al., Small 13 (2017) 1603938.
doi: 10.1002/smll.201603938
T.M. Di, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, Chem. Soc. Rev. 352 (2017) 532–541.
J.R. Jin, T. He, Appl. Surf. Sci. 394 (2017) 364–370.
doi: 10.1016/j.apsusc.2016.10.118
M. Tahir, B. Tahir, Appl. Surf. Sci. 377 (2016) 244–252.
doi: 10.1016/j.apsusc.2016.03.141
K.M. Ji, H.X. Dai, J.G. Deng, et al., Appl. Catal. B 168 (2015) 274–282.
doi: 10.1016/j.apcatb.2014.12.045
T.Y. Tan, W. Xie, G.J. Zhu, et al., J. Porous Mat. 22 (2015) 659–663.
doi: 10.1007/s10934-015-9938-4
J. Poolwong, T. Kiatboonyarit, S. Achiwawanich, et al., Nanomaterials 11 (2021) 1715.
doi: 10.3390/nano11071715
H. Khan, S. Samanta, M. Seth, S. Jana, J. Mater. Sci. 55 (2020) 11907–11918.
doi: 10.1007/s10853-020-04858-2
Y. Song, Y. Peng, H.Y. Li, et al., Chem. Eng. J. 447 (2022) 137450.
doi: 10.1016/j.cej.2022.137450
L.Q. Tang, W. Ni, H. Zhao, Q. Xu, J.X. Jiao, Bioresources 4 (2019) 38–48.
doi: 10.3390/educsci9010038
X.Y. Yang, L.H. Chen, Y. Li, et al., Chem. Soc. Rev. 46 (2017) 481–558.
doi: 10.1039/C6CS00829A
J.X. Low, B. Cheng, J.G. Yu, Appl. Surf. Sci. 392 (2017) 658–686.
doi: 10.1016/j.apsusc.2016.09.093
S. Das, W.M.A.W. Daud, RSC Adv. 4 (2014) 20856–20893.
doi: 10.1039/c4ra01769b
S.R. Lingampalli, M.M. Ayyub, C.N.R. Rao, ACS Omega 2 (2017) 2740–2748.
doi: 10.1021/acsomega.7b00721
C. Han, M. Pelaez, V. Likodimos, et al., Appl. Catal. B 107 (2011) 77–87.
doi: 10.1016/j.apcatb.2011.06.039
M.K. Singh, M.S. Mehata, Opt. Mater.: X 109 (2020) 110309–110310.
doi: 10.1016/j.optmat.2020.110309
T. Wang, X.G. Meng, G.G. Liu, et al., J. Mater. Chem. A 3 (2015) 9491–9501.
doi: 10.1039/C4TA05892E
N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, J. CO2 Util. 26 (2018) 98–122.
doi: 10.1016/j.jcou.2018.04.026
J. Ye, J.H. He, S. Wang, et al., Sep. Purif. Technol. 220 (2019) 8–15.
doi: 10.1016/j.seppur.2019.03.042
C.L. Muhich, J.Y. Westcott, T. Fuerst, A.W. Weimer, C.B. Musgrave, J. Phys. Chem. C 118 (2014) 27415–27427.
doi: 10.1021/jp508882m
K. Kalantari, M. Kalbasi, M. Sohrabi, S.J. Royaee, Ceram. Int. 42 (2016) 14834–14842.
doi: 10.1016/j.ceramint.2016.06.117
L.H. Zhang, C.H. Hu, L.Y. Cheng, et al., Chin. J. Catal. 34 (2013) 2089–2097.
doi: 10.1016/S1872-2067(12)60692-5
H.Y. Li, D.J. Wang, H.M. Fan, et al., J. Colloid Interface Sci. 354 (2011) 175–180.
doi: 10.1016/j.jcis.2010.10.048
L.S. Jia, J.J. Li, W.P. Fang, et al., Catal. Commun. 10 (2009) 1230–1234.
doi: 10.1016/j.catcom.2009.01.025
M.S. Akple, J.X. Low, Z.Y. Qin, et al., Chin. J. Catal. 36 (2015) 2127–2134.
doi: 10.1016/S1872-2067(15)60989-5
W. Zhou, H.G. Fu, ChemCatChem 5 (2013) 885–894.
doi: 10.1002/cctc.201200519
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.
doi: 10.1126/science.1061051
S. Sato, Chem. Phys. Lett. 123 (1986) 126–128.
doi: 10.1016/0009-2614(86)87026-9
S. Cho, C.G. Ahn, J.Y. Park, S. Jeon, Nanoscale 10 (2018) 9747–9751.
doi: 10.1039/C8NR02330A
Z.D. Li, F. Wang, A.V. Kvit, X.D. Wang, J. Phys. Chem. C 119 (2015) 4397–4405.
doi: 10.1021/jp512622j
L. Sun, J.H. Cai, Q. Wu, et al., Electrochim. Acta 108 (2013) 525–531.
doi: 10.1016/j.electacta.2013.06.149
M.R. Khan, T.W. Chuan, A. Yousuf, M.N.K. Chowdhury, C.K. Cheng, Catal. Sci. Technol. 5 (2015) 2522–2531.
doi: 10.1039/C4CY01545B
H. Abdullah, M. Maksudur Rahman Khan, H. Ong, Z. Yaakob, J. CO2 Util. 22 (2017) 15–32.
doi: 10.1016/j.jcou.2017.08.004
N. Singhal, A. Ali, A. Vorontsov, C. Pendem, U. Kumar, Appl. Catal. A: Gen. 523 (2016) 107–117.
doi: 10.1016/j.apcata.2016.05.027
L.Q. Ye, J.Y. Liu, L.H. Tian, T.Y. Peng, L. Zan, Appl. Catal. B 134 (2013) 60–65.
doi: 10.1016/j.apcatb.2012.12.043
S. Neaţu, J.A. Maciá-Agulló, P. Concepción, H. Garcia, J. Am. Chem. Soc. 136 (2014) 15969–15976.
doi: 10.1021/ja506433k
O. Ishitani, C. Inoue, Y. Suzuki, T. Ibusuki, J. Photochem. Photobiol. A 72 (1993) 269–271.
doi: 10.1016/1010-6030(93)80023-3
Y.X. Zhao, B.F. Yang, J. Xu, et al., Thin Solid Films 520 (2012) 3515–3522.
doi: 10.1016/j.tsf.2011.12.076
Z.Y. Chen, L. Fang, W. Dong, et al., J. Mater. Chem. A 2 (2014) 824–832.
doi: 10.1039/C3TA13985A
J.Q. Jiao, Y.C. Wei, Z. Zhao, et al., Catal. Today 258 (2015) 319–326.
doi: 10.1016/j.cattod.2015.01.030
J.Q. Jiao, Y.C. Wei, Y.L. Zhao, et al., Appl. Catal. B 209 (2017) 228–239.
doi: 10.1016/j.apcatb.2017.02.076
A. Kumar, M. Khan, J. He, I.M.C. Lo, Water Res. 170 (2020) 115356.
doi: 10.1016/j.watres.2019.115356
M. Mazur, D. Wojcieszak, D. Kaczmarek, et al., Appl. Surf. Sci. 380 (2016) 165–171.
doi: 10.1016/j.apsusc.2016.01.226
M. Dahl, Y. Liu, Y.J.C.R. Yin, Chem. Rev. 114 (2014) 9853–9889.
doi: 10.1021/cr400634p
B.T. Barroca, N. Ambrožová, K. Kočí, Materials 15 (2022) 967.
doi: 10.3390/ma15030967
G.X. Song, F. Xin, J.S. Chen, X.H. Yin, Appl. Catal. A: Gen. 473 (2014) 90–95.
doi: 10.1016/j.apcata.2013.12.035
J.X. Low, J.G. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017) 1601694.
doi: 10.1002/adma.201601694
H.J. Li, W.G. Tu, Y. Zhou, Z.G. Zou, Adv. Sci. 3 (2016) 1500389.
doi: 10.1002/advs.201500389
J.J. Tao, Z.Z. Gong, G. Yao, et al., J. Alloy. Compd. 688 (2016) 605–612.
doi: 10.1016/j.jallcom.2016.07.074
C.L. Yu, W.Q. Zhou, J.C. Yu, H. Liu, L.F. Wei, Chin. J. Catal. 35 (2014) 1609–1618.
doi: 10.1016/S1872-2067(14)60170-4
Y.J. Wang, Q.S. Wang, X.Y. Zhan, et al., Nanoscale 5 (2013) 8326–8339.
doi: 10.1039/c3nr01577g
K.Z. Qi, J.G. Yu, Interface Sci. Technol. 31 (2020) 265–284.
doi: 10.1016/B978-0-08-102890-2.00008-7
X.Y. Pan, Y.J. Xu, J. Phys. Chem. C 119 (2015) 7184–7194.
doi: 10.1021/jp512797t
C.Y. Dong, M.Y. Xing, J.L. Zhang, J. Phys. Chem. Lett. 7 (2016) 2962–2966.
doi: 10.1021/acs.jpclett.6b01287
J.Y. Bai, X.L. Sun, G. Han, G.W. Diao, J. Alloy. Compd. 722 (2017) 864–871.
doi: 10.1016/j.jallcom.2017.06.102
J.Q. Jiao, Y.C. Wei, Z. Zhao, et al., Ind. Eng. Chem. Res. 53 (2014) 17345–17354.
doi: 10.1021/ie503333b
Y. Xie, G. Ali, S.H. Yoo, S.O. Cho, ACS Appl. Mater. Interfaces 2 (2010) 2910–2914.
doi: 10.1021/am100605a
H. Xie, T. Zeng, S.F. Jin, et al., J. Nanosci. Nanotechno. 13 (2013) 1461–1466.
doi: 10.1166/jnn.2013.6056
X.F. Chen, J. Zhang, Y.N. Huo, H.X. Li, Chin. J. Catal. 34 (2013) 949–955.
doi: 10.1016/S1872-2067(12)60560-9
J.W. Xue, M. Fujitsuka, T. Majima, Chem. Commun. 57 (2021) 3532–3542.
doi: 10.1039/d1cc00204j
Y.R. Wang, F. Wang, Z.X. Wang, Nano Res. 14 (2021) 4328–4335.
doi: 10.1007/s12274-021-3833-x
F. Bi, M.F. Ehsan, W. Liu, T. He, Chin. J. Chem. 33 (2015) 112–118.
doi: 10.1002/cjoc.201400476
J.Y. Wang, G.B. Ji, Y.S. Liu, M.A. Gondal, X.F. Chang, Catal. Commun. 46 (2014) 17–21.
doi: 10.1016/j.catcom.2013.11.011
Y. Zhao, X.Y. Linghu, Y. Shu, et al., J. Environ. Chem. Eng. 10 (2022) 108077.
doi: 10.1016/j.jece.2022.108077
J.X. Low, C.J. Jiang, B. Cheng, et al., Small Methods 1 (2017) 357–366.
doi: 10.1177/1753193416684658
G. Yang, D.M. Chen, H. Ding, et al., Appl. Catal. B 219 (2017) 611–618.
doi: 10.1016/j.apcatb.2017.08.016
Y.C. Wei, J.Q. Jiao, Z. Zhao, et al., J. Mater. Chem. A 3 (2015) 11074–11085.
doi: 10.1039/C5TA00444F
Y.C. Wei, J.Q. Jiao, Z. Zhao, et al., Appl. Catal. B 179 (2015) 422–432.
doi: 10.1016/j.apcatb.2015.05.041
J.R. Ran, J. Zhang, J.G. Yu, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 43 (2014) 7787–7812.
doi: 10.1039/C3CS60425J
M.Q. Yang, N. Zhang, Y.J. Xu, ACS Appl. Mater. Interfaces 5 (2013) 1156–1164.
doi: 10.1021/am3029798
M. Inagaki, Carbon 50 (2012) 3247–3266.
doi: 10.1016/j.carbon.2011.11.045
C.J. Wang, L. Xi, W.J. He, et al., J. Catal. 389 (2020) 440–449.
doi: 10.1016/j.jcat.2020.06.026
P.D. Yang, T. Deng, D.Y. Zhao, et al., Science 282 (1998) 2244–2246.
doi: 10.1126/science.282.5397.2244
N.G. Moustakas, J. Strunk, Chem. Eur. J. 24 (2018) 12739–12746.
doi: 10.1002/chem.201706178
F. Wang, Y. Zhou, P. Li, et al., RSC Adv. 4 (2014) 43172–43177.
doi: 10.1039/C4RA06565D
Y. Yuan, R.T. Guo, Z.W. Zhang, et al., Energy Fuel 35 (2021) 13291–13303.
doi: 10.1021/acs.energyfuels.1c01563
Z.X. Bi, R.T. Guo, X. Hu, et al., Nanoscale 14 (2022) 3367–3386.
doi: 10.1039/d1nr08235c
K. Li, B. Peng, T.Y. Peng, ACS Catal. 6 (2016) 7485–7527.
doi: 10.1021/acscatal.6b02089
Z.Y. Sun, N. Talreja, H.C. Tao, et al., Angew. Chem. Int. Ed. 57 (2018) 7610–7627.
doi: 10.1002/anie.201710509
G. Kaune, M. Memesa, R. Meier, et al., ACS Appl. Mater. Interfaces 1 (2009) 2862–2869.
doi: 10.1021/am900592u
W.Q. Fan, Q.H. Zhang, Y. Wang, Phys. Chem. Chem. Phys. 15 (2013) 2632–2649.
doi: 10.1039/c2cp43524a
H. He, C. Liu, K. Dubois, et al., Ind. Eng. Chem. Res. 51 (2012) 11841–11849.
doi: 10.1021/ie300510n
X.K. Li, Z.J. Zhuang, W. Li, H.Q. Pan, Appl. Catal. A: Gen. 429 (2012) 31–38.
doi: 10.1016/j.apcata.2012.04.001
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Na Lu , Tingting Pang , Xuedong Jing , Yongan Zhu , Linqun Yu , Sining Ben , Yuchan Song , Shiwen Du , Wei Lu , Zhenyi Zhang . Optimizing the Schottky Barrier in AuAg Alloy Decorated TiO2 Nanofibers to Enhance Hot-Electron-Induced CO2 Reduction. Chinese Journal of Structural Chemistry, 2025, 44(8): 100633-100633. doi: 10.1016/j.cjsc.2025.100633
Xiaofan ZHANG , Yu DUAN , Meijie SHI , Nan LU , Renhong LI , Xiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079
Zekun Zhang , Shiji Li , Qian Zhang , Shanshan Li , Liu Yang , Wei Yan , Hao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742
Huarui Han , Yangrui Xu , Yu Cheng , Liguang Tang , Jie Jin , Xinlin Liu , Changchang Ma , Ziyang Lu . Frustrated Lewis pairs in CO2 photoreduction: A review on synergistic activation and charge separation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100728-100728. doi: 10.1016/j.cjsc.2025.100728
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Cheng-Cheng Jiao , Guang-Xing Dong , Ke Su , You-Xiang Feng , Min Zhang , Tong-Bu Lu . The construction of InVO4/BiVO4 heterojunction via cation-exchange for efficient and highly selective CO2 photoreduction to methanol. Chinese Chemical Letters, 2026, 37(1): 110752-. doi: 10.1016/j.cclet.2024.110752
Min Zhang , Weimin Wang , Jun Li , Xun Zhu , Qian Fu . Efficient large-current conversion of CO2 to C2H5OH via a *CO-*OCH2 coupling pathway on alkanethiol-modified Cu2O array electrode. Chinese Chemical Letters, 2026, 37(1): 111926-. doi: 10.1016/j.cclet.2025.111926
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Irshad Ahmad , Yifei Zhang , Ayman Al-Qattan , S. AlFaify , Gao Li . Unlocking the engineering of solar-driven ZnO composites: From fundaments to sustainable and eco-friendly chemical energy. Chinese Journal of Structural Chemistry, 2025, 44(11): 100700-100700. doi: 10.1016/j.cjsc.2025.100700
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052
Aoyun Meng , Zhenhua Li , Guoyuan Xiong , Zhen Li , Jinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
Xiaoxu Duan , Junli Xu , Jiwei Li , Congcong Du , Kai Chen , Teng Xu , Yifei Sun , Haifeng Xiong . Enhancing CO2 reduction efficiency with axial oxygen coordinated Ni-N4 active sites on hierarchical pore N-doped carbon. Chinese Chemical Letters, 2025, 36(7): 110340-. doi: 10.1016/j.cclet.2024.110340