Studying the variable energy band structure for energy storage materials in charge/discharge process
-
* Corresponding authors.
E-mail addresses: mse_huany@ujn.edu.cn (Y. Huan), mse_weit@ujn.edu.cn (T. Wei).
Citation: Xuancheng Chen, Yu Huan, Ningqiang Sun, Yuanhui Su, Xuesong Shen, Guoqing Li, Jiaqi Zhang, Tao Wei. Studying the variable energy band structure for energy storage materials in charge/discharge process[J]. Chinese Chemical Letters, ;2024, 35(2): 108380. doi: 10.1016/j.cclet.2023.108380
A. Manthiram, ACS Cent. Sci. 3 (2017) 1063–1069.
doi: 10.1021/acscentsci.7b00288
G.Q. Li, M.Y. Ma, X.C. Chen, et al., Energy Fuels 37 (2023) 702–710.
doi: 10.1021/acs.energyfuels.2c03129
J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46 (2017) 3529–3614.
doi: 10.1039/C6CS00776G
L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, et al., Nat. Commun. 4 (2013) 2923.
doi: 10.1038/ncomms3923
C.G. Wang, P.X. Sun, G.M. Qu, et al., Chin. Chem. Lett. 29 (2018) 1731–1740.
doi: 10.1016/j.cclet.2018.12.005
M.R. Guo, J. Zhan, Z.K. Wang, et al., Chin. Chem. Lett. 34 (2023) 107709.
doi: 10.1016/j.cclet.2022.07.052
N.N. Yang, L. Ji, H.C. Fu, et al., Chin. Chem. Lett. 34 (2022) 3961–3967.
doi: 10.1016/j.cclet.2022.03.037
X.W. Wang, Y.C. Sun, W.C. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107593.
doi: 10.1016/j.cclet.2022.06.016
Q. Xia, T. Xia, X. Wu, et al., Rare Met. 41 (2022) 1195–1201.
doi: 10.1007/s12598-021-01880-4
N. Balke, S. Jesse, A.N. Morozovska, et al., Nat. Nanotechnol. 5 (2010) 749–754.
doi: 10.1038/nnano.2010.174
W. Kim, W. Ryu, D. Han, et al., ACS Appl. Mater. Interfaces 6 (2014) 4731–4736.
doi: 10.1021/am405335k
Y. Son, N. Kim, T. Lee, et al., Adv. Mater. 32 (2020) e2003286.
doi: 10.1002/adma.202003286
S.M.Y. Zhu, M.D. Stoller, K.J. Ganesh, et al., Science 24 (2011) 1537–1541.
H. Gao, F. Xiao, C.B. Ching, et al., ACS Appl. Mater. Interfaces 4 (2012) 2801–2810.
doi: 10.1021/am300455d
D. Sheberla, J.C. Bachman, J.S. Elias, et al., Nat. Mater. 16 (2017) 220–224.
doi: 10.1038/nmat4766
H. Park, S. Choi, S. Lee, et al., J. Mater. Chem. A 3 (2015) 1325–1332.
doi: 10.1039/C4TA05961A
G. Li, K. He, F. Zhang, et al., Appl. Catal. B: Environ. 309 (2022) 121231.
doi: 10.1016/j.apcatb.2022.121231
W.C. Huo, X.A. Dong, J.Y. Li, et al., Chem. Eng. J. 361 (2019) 129–138.
doi: 10.1016/j.cej.2018.12.071
J.B. Goodenough, Y. Kim, Chem. Mater. 22 (2009) 587–603.
W. Yao, A.R. Armstrong, X. Zhou, et al., Nat. Commun. 10 (2019) 3483.
doi: 10.1038/s41467-019-11077-0
L. Feng, Y. Liu, L. Wu, et al., J. Alloy. Compd. 881 (2021) 160626.
doi: 10.1016/j.jallcom.2021.160626
Q.F. Xiao, M. Gu, H. Yang, et al., Nat. Commun. 6 (2015) 8844.
doi: 10.1038/ncomms9844
K. Ding, X. Zhang, J. Li, et al., CrystEngComm 19 (2017) 5780–5786.
doi: 10.1039/C7CE01130J
U.M. Patil, M.S. Nam, J.S. Sohn, et al., J. Mater. Chem. A 2 (2014) 19075–19083.
doi: 10.1039/C4TA03953J
X. Wu, L. Meng, Q. Wang, et al., Sol. Energy Mater. Sol. Cells 174 (2018) 325–332.
doi: 10.1016/j.solmat.2017.09.021
A.D. Jagadale, V.S. Kumbhar, D.S. Dhawale, et al., Electrochim. Acta 98 (2013) 32–38.
doi: 10.1016/j.electacta.2013.02.094
M.G. Berhe, H.G. Oh, S.K. Park, et al., J. Mater. Res. Technol. 16 (2022) 322–334.
doi: 10.1016/j.jmrt.2021.11.135
F.P. Hagen, D. Kretzler, T. Häber, et al., Carbon 182 (2021) 634–654.
doi: 10.1016/j.carbon.2021.06.006
J.F. Luo, C.Q. Xie, S.L. Pan, et al., J. Quant. Spectrosc. Radiat. Transf. 287 (2022) 108228.
doi: 10.1016/j.jqsrt.2022.108228
Z.L.R. Ma, K. Takada, K. Fukuda, et al., Inorg. Chem. 61 (2006) 3964–3969.
I. Thaheem, K.J. Kim, J.J. Lee, et al., J. Mater. Chem. A 7 (2019) 19696–19703.
doi: 10.1039/C9TA07069A
H. Li, X. Liu, L. Sang, et al., Phys. Status Solidi 251 (2014) 788–791.
doi: 10.1002/pssb.201350199
X. Li, B. Kang, F. Dong, et al., Nano Energy 81 (2021) 105671.
doi: 10.1016/j.nanoen.2020.105671
S. Trasatti, Pure Appl. Chem. 58 (1986) 955–966.
doi: 10.1351/pac198658070955
G. Xiong, R. Shao, T.C. Droubay, et al., Adv. Funct. Mater. 17 (2007) 2133–2138.
doi: 10.1002/adfm.200700146
C. Maheu, L. Cardenas, E. Puzenat, et al., Phys. Chem. Chem. Phys. 20 (2018) 25629–25637.
doi: 10.1039/C8CP04614J
P. Ramaswamy, S. Devkota, R. Pokharel, et al., Sci. Rep. 11 (2021) 8329–8342.
doi: 10.1038/s41598-021-87825-4
M. Forghani, J. McCarthy, A.P. Cameron, et al., J. Electrochem. Soc. 168 (2021) 020508.
doi: 10.1149/1945-7111/abdde2
M.A. Hughes, J.A. Allen, S.W. Donne, Electrochim. Acta 338 (2020) 135847.
doi: 10.1016/j.electacta.2020.135847
D.P. Sahoo, S. Nayak, K.H. Reddy, et al., Inorg. Chem. 57 (2018) 3840–3854.
doi: 10.1021/acs.inorgchem.7b03213
Z. Dong, D. Ding, T. Li, et al., Appl. Surf. Sci. 443 (2018) 321–328.
doi: 10.1016/j.apsusc.2018.03.031
M. Suksomboon, K. Kongsawatvoragul, S. Duangdangchote, et al., ACS Omega 6 (2021) 20804–20811.
doi: 10.1021/acsomega.1c01908
S. Kalasina, P. Pattanasattayavong, M. Suksomboon, et al., Chem. Commun. 53 (2017) 709–712.
doi: 10.1039/C6CC08131B
X. Li, L. Lu, J. Shen, et al., J. Power Sources 477 (2020) 228974.
doi: 10.1016/j.jpowsour.2020.228974
B.V. Gabrelian, A.A. Lavrentyev, Tuan. V. Vu, et al., Mater. Today Commun. 23 (2020) 100828.
doi: 10.1016/j.mtcomm.2019.100828
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Feibin Wei , Yongfang Rao , Yu Huang , Wei Wang , Hui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261