Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis
-
* Corresponding authors.
E-mail addresses: sujian@njust.edu.cn (J. Su), zhanggen@njust.edu.cn (G. Zhang).
Citation: Zhangjie Gu, Zhen Shan, Yulan Wang, Jinjian Wang, Tongtong Liu, Xiaoming Li, Zhiyang Yu, Jian Su, Gen Zhang. Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis[J]. Chinese Chemical Letters, ;2024, 35(2): 108356. doi: 10.1016/j.cclet.2023.108356
S. Lin, C.S. Diercks, Y.B. Zhang, et al., Science 349 (2015) 1208–1213.
doi: 10.1126/science.aac8343
C.J. Wu, X.Y. Li, T.R. Li, et al., J. Am. Chem. Soc. 144 (2022) 18750–18755.
doi: 10.1021/jacs.2c07893
J. Zhou, J. Li, L. Kan, et al., Nat. Commun 13 (2022) 4681.
doi: 10.1038/s41467-022-32449-z
S. Li, L. Li, Y.J. Li, et al., ACS Catal. 10 (2020) 8717–8726.
doi: 10.1021/acscatal.0c01242
H. Chen, H.S. Jena, X. Feng, et al., Angew. Chem. Int. Ed. 61 (2022) e202204938.
doi: 10.1002/anie.202204938
Y.N. Gong, X. Guan, H.L. Jiang, Coord. Chem. Rev. 475 (2023) 214889.
doi: 10.1016/j.ccr.2022.214889
C.X. Chen, Y.Y. Xiong, X. Zhong, et al., Angew. Chem. Int. Ed. 61 (2022) e202114071.
doi: 10.1002/anie.202114071
A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.
doi: 10.1126/science.1120411
X.Y. Xu, P.Y. Cai, H.Z. Chen, et al., J. Am. Chem. Soc. 144 (2022) 18511–18517.
doi: 10.1021/jacs.2c07733
R.Y. Liu, K.T. Tan, Y.F. Gong, et al., Chem. Soc. Rev. 50 (2021) 120–242.
doi: 10.1039/d0cs00620c
H.S. Lu, W.K. Han, X. Yan, et al., Angew. Chem. Int. Ed. 60 (2021) 17881–17886.
doi: 10.1002/anie.202102665
X. Li, K. Zhang, G. Wang, et al., Nat. Synth. 1 (2022) 382–392.
doi: 10.1038/s44160-022-00071-y
X. Wang, M. Bahri, Z.W. Fu, et al., J. Am. Chem. Soc. 143 (2021) 15011–15016.
doi: 10.1021/jacs.1c08351
C. Yuan, S.G. Fu, K.W. Yang, et al., J. Am. Chem. Soc. 143 (2021) 369–381.
doi: 10.1021/jacs.0c11050
X.Y. Wang, L.J. Chen, S.Y. Chong, et al., Nat. Chem. 10 (2018) 1180–1189.
doi: 10.1038/s41557-018-0141-5
X. Ren, C. Li, W. Kang, et al., CCS Chem. 4 (2022) 2429–2439.
doi: 10.31635/ccschem.021.202101090
X. Liu, X. Yang, X. Ding, et al., Chin. Chem. Lett. 34 (2023) 108148.
doi: 10.1016/j.cclet.2023.108148
L. Zou, R.J. Sa, H. Zhong, et al., ACS Catal. 12 (2022) 3550–3557.
doi: 10.1021/acscatal.1c05449
B. Han, X. Ding, B.Q. Yu, et al., J. Am. Chem. Soc. 143 (2021) 7104–7113.
doi: 10.1021/jacs.1c02145
Y.L. Yang, H.Y. Niu, L. Xu, et al., Appl. Catal. B 269 (2020) 118799.
doi: 10.1016/j.apcatb.2020.118799
D.W. Kang, J.H. Kim, J.H. Lim, et al., ACS Catal. 12 (2022) 9621–9628.
doi: 10.1021/acscatal.2c02414
D. Chen, W.B. Chen, G. Zhang, et al., ACS Catal. 12 (2022) 616–623.
doi: 10.1021/acscatal.1c05233
Q. Li, X.W. Lan, G.Y. An, et al., ACS Catal. 10 (2020) 6664–6675.
doi: 10.1021/acscatal.0c00290
A. Lopez-Magano, B. Ortin-Rubio, I. Imaz, et al., ACS Catal. 11 (2021) 12344–12354.
doi: 10.1021/acscatal.1c03634
H. Chen, W. Liu, A. Laemont, et al., Angew. Chem. Int. Ed. 60 (2021) 10820–10827.
doi: 10.1002/anie.202101036
P. Shang, X. Yan, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 107584.
doi: 10.1016/j.cclet.2022.06.007
W.T. Wang, H.T. Wang, X.H. Tang, et al., Chem. Sci. 13 (2022) 8679–8685.
doi: 10.1039/d2sc02503e
H. Wang, S. Jin, X.D. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 22828–22839.
doi: 10.1002/anie.202002241
Adv. Energy. Mater. 10 (2020) 1903659.
Y.Y. Qan, D.D. Li, Y.L. Han, et al., J. Am. Chem. Soc. 142 (2020) 20763–20771.
doi: 10.1021/jacs.0c09727
H. Wang, W.X. Liu, X. He, et al., J. Am. Chem. Soc. 142 (2020) 14007–14022.
doi: 10.1021/jacs.0c06966
N.C. Flanders, M.S. Kirschner, P. Kim, et al., J. Am. Chem. Soc. 142 (2020) 14957–14965.
doi: 10.1021/jacs.0c05404
T. Banerjee, F. Podjaski, J. Kroger, et al., Nat. Rev. Mater. 6 (2021) 168–190.
X. Zhang, K. Geng, G.D. Scholes, J. Am. Chem. Soc. 144 (2022) 16423–16432.
doi: 10.1021/jacs.2c04742
Y. Liu, X. Jiang, L. Chen, et al., J. Mater. Chem. A 11 (2023) 1208–1215.
doi: 10.1039/d2ta07177k
H. Yu, D. Wang, JACS Au 2 (2022) 1848–1856.
doi: 10.1021/jacsau.2c00169
Z.A. Lan, G. Zhang, X. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 10236–10240.
doi: 10.1002/anie.201904904
Q. Wang, X. Deng, H. Pen, et al., Nano Res. 16 (2023) 4225–4232.
doi: 10.1007/s12274-022-5105-9
H. Lin, Y. Liu, Z. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202214142.
doi: 10.1002/anie.202214142
H. Chen, A. Wadsworth, C. Ma, et al., J. Am. Chem. Soc. 141 (2019) 18806–18813.
doi: 10.1021/jacs.9b09367
G. Li, X. Zhang, L.O. Jones, et al., J. Am. Chem. Soc. 143 (2021) 6123–6139.
doi: 10.1021/jacs.1c00211
Z. Zhang, Y. Li, G. Cai, et al., J. Am. Chem. Soc. 142 (2020) 18741–18745.
doi: 10.1021/jacs.0c08557
Z.P. Li, Y.F. Zhi, P.P. Shao, et al., Appl. Catal. B 245 (2019) 334–342.
doi: 10.1016/j.apcatb.2018.12.065
Y. Su, B. Li, H. Xu, et al., J. Am. Chem. Soc. 144 (2022) 18218–18222.
doi: 10.1021/jacs.2c05701
C.Z. Li, J.L. Liu, H. Li, et al., Nat. Commun. 13 (2022) 2357.
doi: 10.1038/s41467-022-30035-x
X.D. Zhu, D.H. Li, R.J. Zhang, et al., Appl. Surf. Sci. 519 (2020) 146262.
doi: 10.1016/j.apsusc.2020.146262
S. Tamariz, G. Callsen, J. Stachurski, et al., ACS Photonics 7 (2020) 1515–1522.
doi: 10.1021/acsphotonics.0c00310
M. Hamada, S. Rana, E. Jokar, et al., ACS Appl. Energ Mater. 3 (2020) 11830–11840.
doi: 10.1021/acsaem.0c01983
S. Duhovic, M. Dinca, Chem. Mater. 27 (2015) 5487–5490.
doi: 10.1021/acs.chemmater.5b02358
G.L. Gibson, T.M. McCormick, D.S. Seferos, J. Am. Chem. Soc. 134 (2012) 539–47.
doi: 10.1021/ja208917m
W.L. Sheng, X.X. Wang, Y.X. Wang, et al., ACS Catal. 12 (2022) 11078–11088.
doi: 10.1021/acscatal.2c02519
H. Liu, C.Y. Xu, D.D. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 5379–5383.
doi: 10.1002/anie.201800320
Q. Li, J. Wang, Y.Z. Zhang, et al., ACS Appl. Mater Interfaces 13 (2021) 39291–39303.
doi: 10.1021/acsami.1c08951
G. Li, P. Fu, Q. Yue, et al., Chem. Catal. 2 (2022) 1734–1747.
doi: 10.1016/j.checat.2022.05.002
Z.A. Lan, M. Wu, Z. Fang, et al., Angew. Chem. Int. Ed. 60 (2021) 16355–16359.
doi: 10.1002/anie.202103992
W.J. Zhang, Z.Z. Deng, J.Y. Deng, et al., J. Mater. Chem. A 10 (2022) 22419–22427.
doi: 10.1039/d2ta06479k
S. Xue, W. Huang, W. Lin, et al., Chem. Catal. 2 (2022) 125–139.
doi: 10.1016/j.checat.2021.11.019
R. Chen, J.L. Shi, Y. Ma, et al., Angew. Chem. Int. Ed. 58 (2019) 6430–6434.
doi: 10.1002/anie.201902543
J.L. Shi, R. Chen, H. Hao, et al., Angew. Chem. Int. Ed. 59 (2020) 9088–9093.
doi: 10.1002/anie.202000723
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539