Citation: Bo Li, Shihao Liu, Wu Fan, Xiaotong Shen, Jing Xu, Suhua Li. Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes[J]. Chinese Chemical Letters, ;2023, 34(7): 108027. doi: 10.1016/j.cclet.2022.108027 shu

Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes

    * Corresponding author.
    E-mail address: lisuhua5@mail.sysu.edu.cn (S. Li).
  • Received Date: 31 August 2022
    Revised Date: 22 November 2022
    Accepted Date: 28 November 2022
    Available Online: 29 November 2022

Figures(7)

  • Decarbonylation of aldehydes is a basic organic transformation, which has been developed for more than six-decade. However, as comparing to well-studied aromatic aldehydes, fewer examples for catalytic decarbonylation of aliphatic aldehydes were reported, mainly on simple or special substrates. For α-bulky or highly functionalized ones, stoichiometric Rh(Ⅰ) were usually required for decent yields. Herein, we present a rare example of Ir(Ⅰ)-catalyzed direct decarbonylation of α-quaternary aldehydes with broad substrate scope and good functional group compatibility via judicious selection of ligand. The α-chirality is memorized in this decarbonylation process. In addition, we report a broad-spectrum decarbonylation of α-secondary and α-tertiary aldehydes containing multifunctional groups with an improved Rh(Ⅰ)/DPPP recipe. Finally, we realized selective decarbonylation of α-tertiary aldehydes in the presence of α-quaternary one via the reactivity differences.
  • 加载中
    1. [1]

      H. Lu, T.Y. Yu, P.F. Xu, H. Wei, Chem. Rev. 121 (2020) 365–411.

    2. [2]

      D.H. Doughty, M.P. Anderson, A.L. Casalnuovo, et al., The effect of chelating diphosphine ligands on homogeneous catalytic decarbonylation reactions using cationic rhodium catalysts, in: E.C. Alyea, D.W. Meek (Eds.), Catalytic Aspects of Metal Phosphine Complexes, American Chemical Society, 1982, pp. 65–83.

    3. [3]

      D.H. Doughty, L.H. Pignolet, Decarbonylation reactions using transition metal complexesin in: L.H. Pignolet (Eds.), Homogeneous Catalysis with Metal Phosphine Complexes, Springer, 1983, pp. 343–375.

    4. [4]

      J. Tsuji, K. Ohno, Synthesis (1969) 157–169.

    5. [5]

      F.L. Zhang, K. Hong, T.J. Li, H. Park, J.Q. Yu, Science 351 (2016) 252–256.  doi: 10.1126/science.aad7893

    6. [6]

      X.H. Liu, H. Park, J.H. Hu, et al., J. Am. Chem. Soc. 139 (2017) 888–896.  doi: 10.1021/jacs.6b11188

    7. [7]

      Y.H. Li, Y. Ouyang, N. Chekshin, J.Q. Yu, J. Am. Chem. Soc. 144 (2022) 4727–4733.  doi: 10.1021/jacs.1c13586

    8. [8]

      G. Li, Q. Liu, L. Vasamsetty, W. Guo, J. Wang, Angew. Chem. Int. Ed. 59 (2020) 3475–3479.  doi: 10.1002/anie.201913733

    9. [9]

      B. Li, B. Lawrence, G. Li, H. Ge, Angew. Chem. Int. Ed. 59 (2020) 3078–3082.  doi: 10.1002/anie.201913126

    10. [10]

      P. Gandeepan, L. Ackermann, Chem 4 (2018) 199–222.  doi: 10.1016/j.chempr.2017.11.002

    11. [11]

      J.I. Higham, J.A. Bull, Org. Biomol. Chem. 18 (2020) 7291–7315.  doi: 10.1039/d0ob01587c

    12. [12]

      L.J. Oxtoby, Z.Q. Li, V.T. Tran, et al., Angew. Chem. Int. Ed. 132 (2020) 8970–8975.  doi: 10.1002/ange.202001069

    13. [13]

      Z. Liu, L.J. Oxtoby, M. Liu, et al., J. Am. Chem. Soc. 143 (2021) 8962–8969.  doi: 10.1021/jacs.1c03178

    14. [14]

      M. Liu, J. Sun, T.G. Erbay, et al., Angew. Chem. Int. Ed. 61 (2022) e202203624.

    15. [15]

      K.A. Ahrendt, C.J. Borths, D.W.C. MacMillan, J. Am. Chem. Soc. 122 (2000) 4243–4244.  doi: 10.1021/ja000092s

    16. [16]

      E. Taarning, R. Madsen, Chem. Eur. J. 14 (2008) 5638–5644.  doi: 10.1002/chem.200800003

    17. [17]

      A.B. Northrup, D.W.C. MacMillan, J. Am. Chem. Soc. 124 (2002) 6798–6799.  doi: 10.1021/ja0262378

    18. [18]

      W.S. Jen, J.J.M. Wiener, D.W.C. MacMillan, J. Am. Chem. Soc. 122 (2000) 9874–9875.  doi: 10.1021/ja005517p

    19. [19]

      N.A. Paras, D.W.C. MacMillan, J. Am. Chem. Soc. 123 (2001) 4370–4371.  doi: 10.1021/ja015717g

    20. [20]

      B. List, J. Am. Chem. Soc. 124 (2002) 5656–5657.  doi: 10.1021/ja0261325

    21. [21]

      J.F. Austin, D.W.C. MacMillan, J. Am. Chem. Soc. 124 (2002) 1172–1173.  doi: 10.1021/ja017255c

    22. [22]

      T.D. Beeson, A. Mastracchio, J.B. Hong, K. Ashton, D.W.C. MacMillan, Science 316 (2007) 582–585.  doi: 10.1126/science.1142696

    23. [23]

      L. Caruana, F. Kniep, T.K. Johansen, P.H. Poulsen, K.A. Jørgensen, J. Am. Chem. Soc. 136 (2014) 15929–15932.  doi: 10.1021/ja510475n

    24. [24]

      E. Arceo, I.D. Jurberg, A. Alvarez-Fernández, P. Melchiorre, Nat. Chem. 5 (2013) 750–756.  doi: 10.1038/nchem.1727

    25. [25]

      D.A. Nicewicz, D.W. MacMillan, Science 322 (2008) 77–80.  doi: 10.1126/science.1161976

    26. [26]

      N. Vignola, B. List, J. Am. Chem. Soc. 126 (2004) 450–451.  doi: 10.1021/ja0392566

    27. [27]

      J. García-Fortanet, S.L. Buchwald, Angew. Chem. Int. Ed. 47 (2008) 8108–8111.  doi: 10.1002/anie.200803809

    28. [28]

      G.D. Vo, J.F. Hartwig, Angew. Chem. Int. Ed. 47 (2008) 2127–2130.  doi: 10.1002/anie.200705357

    29. [29]

      Y. Terao, Y. Fukuoka, T. Satoh, M. Miura, M. Nomura, Tetrahedron Lett. 43 (2002) 101–104.  doi: 10.1016/S0040-4039(01)02077-9

    30. [30]

      R. Martín, S.L. Buchwald, Angew. Chem. Int. Ed. 46 (2007) 7236–7239.  doi: 10.1002/anie.200703009

    31. [31]

      Z. Pan, W. Li, S. Zhu, et al., Angew. Chem. Int. Ed. 60 (2021) 18542–18546.  doi: 10.1002/anie.202106109

    32. [32]

      L. Yang, X. Guo, C.J. Li, Adv. Synth. Catal. 352 (2010) 2899–2904.  doi: 10.1002/adsc.201000476

    33. [33]

      L. Yang, C.A. Correia, X. Guo, C.J. Li, Tetrahedron Lett. 51 (2010) 5486–5489.  doi: 10.1016/j.tetlet.2010.08.040

    34. [34]

      J. Wang, X. Guo, C.J. Li, J. Organomet. Chem. 696 (2011) 211–215.  doi: 10.1016/j.jorganchem.2010.08.051

    35. [35]

      X. Guo, J. Wang, C.J. Li, J. Am. Chem. Soc. 131 (2009) 15092–15093.  doi: 10.1021/ja906265a

    36. [36]

      X. Guo, J. Wang, C.J. Li, Org. Lett. 12 (2010) 3176–3178.  doi: 10.1021/ol101107w

    37. [37]

      C.L. Allen, J.M. Williams, Angew. Chem. Int. Ed. 49 (2010) 1724–1725.  doi: 10.1002/anie.200906896

    38. [38]

      L. Kang, F. Zhang, L.T. Ding, L. Yang, RSC Adv. 5 (2015) 100452–100456.  doi: 10.1039/C5RA21610A

    39. [39]

      X.H. Ouyang, R.J. Song, B. Liu, J.H. Li, Adv. Synth. Catal. 358 (2016) 1903–1909.  doi: 10.1002/adsc.201501113

    40. [40]

      Y. Li, J.H. Li, Org. Lett. 20 (2018) 5323–5326.  doi: 10.1021/acs.orglett.8b02243

    41. [41]

      X.J. Liu, S.Y. Zhou, Y. Xiao, et al., Org. Lett. 23 (2021) 7839–7844.  doi: 10.1021/acs.orglett.1c02858

    42. [42]

      L. Guo, W. Srimontree, C. Zhu, et al., Nat. Commun. 10 (2019) 1957.  doi: 10.1038/s41467-019-09766-x

    43. [43]

      W. Srimontree, L. Guo, M. Rueping, Chem. Eur. J. 26 (2020) 423–427.  doi: 10.1002/chem.201904842

    44. [44]

      X. Fan, R. Liu, Y. Wei, M. Shi, Org. Chem. Front. 6 (2019) 2667–2671.  doi: 10.1039/c9qo00614a

    45. [45]

      H. Eschinazi, H. Pines, J. Org. Chem. 24 (1959) 1369-1369.

    46. [46]

      J.A. Osborn, F.H. Jardine, J.F. Young, G. Wilkinson, J. Chem. Soc. A (1966) 1711–1732.

    47. [47]

      J. Tsuji, K. Ohno, Tetrahedron Lett. 6 (1965) 3969–3971.  doi: 10.1016/S0040-4039(01)89127-9

    48. [48]

      K. Ohno, J. Tsuji, J. Am. Chem. Soc. 90 (1968) 99–107.  doi: 10.1021/ja01003a018

    49. [49]

      K. Ding, S. Xu, R. Alotaibi, et al., J. Org. Chem. 82 (2017) 4924–4929.  doi: 10.1021/acs.joc.7b00284

    50. [50]

      T. Matsuyama, T. Yatabe, T. Yabe, K. Yamaguchi, ACS Catal. 11 (2021) 13745–13751.  doi: 10.1021/acscatal.1c03375

    51. [51]

      T. Hattori, R. Takakura, T. Ichikawa, et al., J. Org. Chem. 81 (2016) 2737–2743.  doi: 10.1021/acs.joc.5b02632

    52. [52]

      D. Ainembabazi, C. Reid, A. Chen, et al., J. Am. Chem. Soc. 142 (2020) 696–699.  doi: 10.1021/jacs.9b12354

    53. [53]

      Akanksha, D.M., Green Chem. 14 (2012) 2314–2320.  doi: 10.1039/c2gc35622h

    54. [54]

      A. Modak, A. Deb, T. Patra, et al., Chem. Commun. 48 (2012) 4253–4255.  doi: 10.1039/c2cc31144e

    55. [55]

      V. Ajdačić, A. Nikolić, S. Simić, et al., Synthesis 50 (2018) 119–126.  doi: 10.1055/s-0036-1590892

    56. [56]

      A. Modak, S. Rana, A.K. Phukan, D. Maiti, Eur. J. Org. Chem. 2017 (2017) 4168–4174.  doi: 10.1002/ejoc.201700451

    57. [57]

      B. Gutmann, P. Elsner, T. Glasnov, D.M. Roberge, C.O. Kappe, Angew. Chem. Int. Ed. 53 (2014) 11557–11561.  doi: 10.1002/anie.201407219

    58. [58]

      C. Chapuis, B. Winter, K.H. Schulte-Elte, Tetrahedron Lett. 33 (1992) 6135–6138.  doi: 10.1016/S0040-4039(00)60025-4

    59. [59]

      X.T. Min, Y.K. Mei, B.Z. Chen, et al., J. Am. Chem. Soc. 144 (2022) 11081–11087.  doi: 10.1021/jacs.2c04422

    60. [60]

      D. Doughty, L. Pignolet, J. Am. Chem. Soc. 100 (1978) 7083–7085.  doi: 10.1021/ja00490a061

    61. [61]

      T.C. Fessard, S.P. Andrews, H. Motoyoshi, E.M. Carreira, Angew. Chem. Int. Ed. 46 (2007) 9331–9334.  doi: 10.1002/anie.200702995

    62. [62]

      B. Morandi, E.M. Carreira, Synlett 2009 (2009) 2076–2078.

    63. [63]

      R.N. Monrad, R. Madsen, J. Org. Chem. 72 (2007) 9782–9785.  doi: 10.1021/jo7017729

    64. [64]

      M. Kreis, A. Palmelund, L. Bunch, R. Madsen, Adv. Synth. Catal. 348 (2006) 2148–2154.  doi: 10.1002/adsc.200600228

    65. [65]

      P. Fristrup, M. Kreis, A. Palmelund, P.O. Norrby, R. Madsen, J. Am. Chem. Soc. 130 (2008) 5206–5215.  doi: 10.1021/ja710270j

    66. [66]

      C.M. Beck, S.E. Rathmill, Y.J. Park, et al., Organometallics 18 (1999) 5311–5317.  doi: 10.1021/om9905106

    67. [67]

      M.A. Aubart, L.H. Pignolet, Bis[1,3-bis(diphenylphosphino)propane]rhodium tetrafluoroborate, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2001, 1–2.

    68. [68]

      F. Abu-Hasanayn, M.E. Goldman, A.S. Goldman, J. Am. Chem. Soc. 114 (1992) 2520–2524.  doi: 10.1021/ja00033a028

    69. [69]

      V. Ajdačić, A. Nikolić, M. Kerner, P. Wipf, I.M. Opsenica, Synlett 29 (2018) 1781–1785.  doi: 10.1055/s-0037-1610433

    70. [70]

      G. Domazetis, B. Tarpey, D. Dolphin, B.R. James, J. Chem. Soc. Chem. Commun. (1980) 939–940.

    71. [71]

      T. Iwai, T. Fujihara, Y. Tsuji, Chem. Commun. (2008) 6215–6217.  doi: 10.1039/b813171f

    72. [72]

      T. Shirai, K. Sugimoto, M. Iwasaki, et al., Synlett 30 (2019) 972–976.  doi: 10.1055/s-0037-1611802

    73. [73]

      A.E. Roa, V. Salazar, J. López-Serrano, et al., Organometallics 31 (2012) 716–721.  doi: 10.1021/om201094q

    74. [74]

      H. Zhang, A. Padwa, Tetrahedron Lett. 47 (2006) 3905–3908.  doi: 10.1016/j.tetlet.2006.03.163

    75. [75]

      Y. Wang, Y.C. Luo, H.B. Zhang, P.F. Xu, Org. Biomol. Chem. 10 (2012) 8211–8215.  doi: 10.1039/c2ob26422f

    76. [76]

      T. Kato, M. Hoshikawa, Y. Yaguchi, et al., Tetrahedron 58 (2002) 9213–9222.  doi: 10.1016/S0040-4020(02)01192-4

    77. [77]

      M. Harmata, S. Wacharasindhu, Org. Lett. 7 (2005) 2563–2565.  doi: 10.1021/ol050598l

    78. [78]

      S. Ikeda, M. Shibuya, Y. Iwabuchi, Chem. Commun. (2007) 504–506.

    79. [79]

      J.P. Malerich, T.J. Maimone, G.I. Elliott, D. Trauner, J. Am. Chem. Soc. 127 (2005) 6276–6283.  doi: 10.1021/ja050092y

    80. [80]

      P. Hu, S.A. Snyder, J. Am. Chem. Soc. 139 (2017) 5007–5010.  doi: 10.1021/jacs.7b01454

    81. [81]

      F.E. Ziegler, M. Belema, J. Org. Chem. 62 (1997) 1083–1094.  doi: 10.1021/jo961992n

    82. [82]

      A. Padwa, H. Zhang, J. Org. Chem. 72 (2007) 2570-2582.  doi: 10.1021/jo0626111

    83. [83]

      Ž. Selaković, A.M. Nikolić, V. Ajdačić, I.M. Opsenica, Eur. J. Org. Chem. 2022 (2022) e202101265.

    84. [84]

      M. Tanaka, T. Ohshima, H. Mitsuhashi, M. Maruno, T. Wakamatsu, Tetrahedron 51 (1995) 11693–11702.  doi: 10.1016/0040-4020(95)00701-9

    85. [85]

      C.M. Zeng, M. Han, D.F. Covey, J. Org. Chem. 65 (2000) 2264–2266.  doi: 10.1021/jo991953m

    86. [86]

      L. Furst, J.M. Narayanam, C.R. Stephenson, Angew. Chem. Int. Ed. 50 (2011) 9655–9659.  doi: 10.1002/anie.201103145

    87. [87]

      R.K. Boeckman, J. Zhang, M.R. Reeder, Org. Lett. 4 (2002) 3891–3894.  doi: 10.1021/ol0267174

    88. [88]

      M.G. Banwell, M.J. Coster, A.J. Edwards, O.P. Karunaratne, J.A. Smith, L.L. Welling, A.C. Willis, Aust. J. Chem. 56 (2003) 585–595.  doi: 10.1071/CH02242

    89. [89]

      D.W. MacMillan, L.E. Overman, J. Am. Chem. Soc. 117 (1995) 10391–10392.  doi: 10.1021/ja00146a028

    90. [90]

      X. Wu, F.A. Cruz, A. Lu, V.M. Dong, J. Am. Chem. Soc. 140 (2018) 10126–10130.  doi: 10.1021/jacs.8b06069

    91. [91]

      H.M. Walborsky, L.E. Allen, Tetrahedron Lett. 11 (1970) 823–824.  doi: 10.1016/S0040-4039(01)97841-4

    92. [92]

      H.M. Walborsky, L.E. Allen, J. Am. Chem. Soc. 93 (1971) 5465–5468.  doi: 10.1021/ja00750a026

    93. [93]

      R.H. Crabtree, Insertion and elimination, in: R.H. Crabtree (Ed.), The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, 2014, pp. 185–203.

    94. [94]

      S.K. Murphy, J.W. Park, F.A. Cruz, V.M. Dong, Science 347 (2015) 56–60.  doi: 10.1126/science.1261232

    95. [95]

      G. Tan, Y. Wu, Y. Shi, J. You, Angew. Chem. Int. Ed. 58 (2019) 7440–7444.  doi: 10.1002/anie.201902553

    96. [96]

      S. Kusumoto, T. Tatsuki, K. Nozaki, Angew. Chem. Int. Ed. 54 (2015) 8458–8461.  doi: 10.1002/anie.201503620

    97. [97]

      R. Prince, K. Raspin, Chem. Commun. (1966) 156–157.

    98. [98]

      R. Schmid, M. Scalone, V. Michelet, et al., (R)- and (S)-2,2 -Bis(diphenylphosphino)-6,6-dimethoxy-1,1-biphenyl, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2001, 1–24.

    99. [99]

      M.L. Ma, Z.H. Peng, L. Chen, et al., Chin. J. Chem. 24 (2006) 1391–1396.  doi: 10.1002/cjoc.200690260

    100. [100]

      M.L. Ma, Z.H. Peng, Y. Guo, et al., Chin. Chem. Lett. 21 (2010) 576–579.  doi: 10.1016/j.cclet.2010.01.030

    101. [101]

      T. Qin, L.R. Malins, J.T. Edwards, et al., Angew. Chem. Int. Ed. 56 (2017) 260–265.  doi: 10.1002/anie.201609662

    102. [102]

      J.D. Griffin, M.A. Zeller, D.A. Nicewicz, J. Am. Chem. Soc. 137 (2015) 11340–11348.  doi: 10.1021/jacs.5b07770

    103. [103]

      E.P. Olsen, R. Madsen, Chem. Eur. J. 18 (2012) 16023–16029.  doi: 10.1002/chem.201202631

    104. [104]

      E.P.K. Olsen, T. Singh, P. Harris, P.G. Andersson, R. Madsen, J. Am. Chem. Soc. 137 (2015) 834–842.  doi: 10.1021/ja5106943

    105. [105]

      M.J. Pedersen, R. Madsen, M.H. Clausen, Chem. Commun. 54 (2018) 952–955.  doi: 10.1039/c7cc09260a

  • 加载中
    1. [1]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    2. [2]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    3. [3]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    4. [4]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    5. [5]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    6. [6]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    7. [7]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    8. [8]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    9. [9]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    10. [10]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    11. [11]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    12. [12]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    13. [13]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    14. [14]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    15. [15]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    16. [16]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

Metrics
  • PDF Downloads(11)
  • Abstract views(522)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return