Citation: Dazhi Feng, Lihua Liu, Yuqi Shi, Pian Du, Shengtao Xu, Zheying Zhu, Jinyi Xu, Hong Yao. Current development of bicyclic peptides[J]. Chinese Chemical Letters, ;2023, 34(6): 108026. doi: 10.1016/j.cclet.2022.108026 shu

Current development of bicyclic peptides

    * Corresponding authors.
    E-mail addresses: cpuxst@163.com (S. Xu), jinyixu@china.com (J. Xu), hyao1989@sina.cn (H. Yao).
  • Received Date: 23 August 2022
    Revised Date: 22 November 2022
    Accepted Date: 28 November 2022
    Available Online: 29 November 2022

Figures(18)

  • Bicyclic peptides, a class of polypeptides with two loops within their structure, have emerged as powerful tools in the development of new peptide drugs. They have the potential to bind to challenged drug targets, with antibody-like affinity and selectivity. Meanwhile, bicyclic peptides possess small molecule-like access to chemical synthesis, which is conducive to large-scale synthesis and screening. In the last five years, bicyclic peptide technology has been increasingly developed, and researchers have carried out a variety of studies to elucidate the potential functions of bicyclic peptides. With the continuous development of synthetic methods and the advances of new technology to build bicyclic peptide libraries, bicyclic peptides are now becoming widely used in the development of new drugs for various diseases. This perspective provides an overview of the structure types, synthesis and applications of bicyclic peptides in current drug development, and our own views on future challenges of bicyclic peptides.
  • 加载中
    1. [1]

      A. Mullard, Nat. Rev. Drug. Discov. 20 (2021) 85-90.  doi: 10.1038/d41573-021-00002-0

    2. [2]

      C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug. Deliv. Rev. 46 (2001) 3-26.

    3. [3]

      J.A. Robinson, S. Demarco, F. Gombert, K. Moehle, D. Obrecht, Drug Discov. Today 13 (2008) 944-951.

    4. [4]

      E.V. Gurevich, V.V. Gurevich, Handb. Exp. Pharmacol. 219 (2014) 1-12.  doi: 10.1007/978-3-642-41199-1_1

    5. [5]

      L.K. Buckton, M.N. Rahimi, S.R. McAlpine, Chem. Eur. J. 27 (2021) 1487-1513.  doi: 10.1002/chem.201905385

    6. [6]

      P.M. O'Neil, A.L. Birkenfeld, B. McGowan, et al., Lancet 392 (2018) 637-649.

    7. [7]

      P.G. Dougherty, A. Sahni, D. Pei, Chem. Rev. 119 (2019) 10241-10287.  doi: 10.1021/acs.chemrev.9b00008

    8. [8]

      Z. Qian, P.G. Dougherty, D. Pei, Curr. Opin. Chem. Biol. 38 (2017) 80-86.

    9. [9]

      F. Giordanetto, J. Kihlberg, J. Med. Chem. 57 (2014) 278-295.  doi: 10.1021/jm400887j

    10. [10]

      J.E. Bock, J. Gavenonis, J.A. Kritzer, ACS Chem. Biol. 8 (2013) 488-499.  doi: 10.1021/cb300515u

    11. [11]

      C.A. Rhodes, D. Pei, Chem. Eur. J. 23 (2017) 12690-12703.  doi: 10.1002/chem.201702117

    12. [12]

      G.M. Watson, K. Kulkarni, J. Sang, et al., J. Med. Chem. 60 (2017) 9349-9359.  doi: 10.1021/acs.jmedchem.7b01320

    13. [13]

      T. Mund, M.J. Lewis, S. Maslen, H.R. Pelham, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 16736-16741.  doi: 10.1073/pnas.1412152111

    14. [14]

      J.S. Quartararo, M.R. Eshelman, L. Peraro, et al., Bioorg. Med. Chem. 22 (2014) 6387-6391.

    15. [15]

      M. Wendt, R. Bellavita, A. Gerber, et al., Angew. Chem. Int. Ed. 60 (2021) 13937-13944.  doi: 10.1002/anie.202102082

    16. [16]

      H. Ueda, T. Manda, S. Matsumoto, et al., J. Antibiot. 47 (1994) 315-323.  doi: 10.7164/antibiotics.47.315

    17. [17]

      V. Baeriswyl, H. Rapley, L. Pollaro, et al., ChemMedChem 7 (2012) 1173-1176.  doi: 10.1002/cmdc.201200071

    18. [18]

      D. Bernhagen, V. Jungbluth, N.G. Quilis, et al., ACS Comb. Sci. 21 (2019) 198-206.  doi: 10.1021/acscombsci.8b00144

    19. [19]

      D.D. Smith, J. Slaninova, V.J. Hruby, J. Med. Chem. 35 (1992) 1558-1563.  doi: 10.1021/jm00087a009

    20. [20]

      M. Eder, S. Pavan, U. Bauder-Wüst, et al., Cancer Res. 79 (2019) 841-852.  doi: 10.1158/0008-5472.can-18-0238

    21. [21]

      M. Li, X. Shao, C. Wu, et al., Chem. Commun. 56 (2020) 9537-9540.  doi: 10.1039/d0cc01089h

    22. [22]

      I. Di Bonaventura, S. Baeriswyl, A. Capecchi, et al., Chem. Commun. 54 (2018) 5130-5133.  doi: 10.1039/c8cc02412j

    23. [23]

      N.E. Shepherd, R.S. Harrison, G. Ruiz-Gomez, et al., Org. Biomol. Chem. 14 (2016) 10939-10945.

    24. [24]

      S. Ahangarzadeh, M.M. Kanafi, S. Hosseinzadeh, et al., Drug Discov. Today 24 (2019) 1311-1319.

    25. [25]

      Z. Qian, C.A. Rhodes, L.C. McCroskey, et al., Angew. Chem. Int. Ed. 56 (2017) 1525-1529.  doi: 10.1002/anie.201610888

    26. [26]

      G. Zanotti, C. Birr, T. Wieland, Int. J. Pept. Protein Res. 12 (1978) 204-216.

    27. [27]

      K. Matinkhoo, A. Pryyma, M. Todorovic, B.O. Patrick, D.M. Perrin, J. Am. Chem. Soc. 140 (2018) 6513-6517.  doi: 10.1021/jacs.7b12698

    28. [28]

      P.E. Dawson, T.W. Muir, I. Clark-Lewis, S.B. Kent, Science 266 (1994) 776-779.  doi: 10.1126/science.7973629

    29. [29]

      N. Ghalit, J.F. Reichwein, H.W. Hilbers, et al., ChemBioChem 8 (2007) 1540-1554.  doi: 10.1002/cbic.200700244

    30. [30]

      L. Mendive-Tapia, S. Preciado, J. Garcia, et al., Nat. Commun. 6 (2015) 7160.

    31. [31]

      M. Bartoloni, X. Jin, M.J. Marcaida, et al., Chem. Sci. 6 (2015) 5473-5490.

    32. [32]

      C. Xu, J. Xu, H. Liu, X. Li, Chin. Chem. Lett. 29 (2018) 1119-1122.

    33. [33]

      B.K. Chung, A.K. Yudin, Org. Biomol. Chem. 13 (2015) 8768-8779.

    34. [34]

      Y. Wang, B.J. Bruno, S. Cornillie, et al., Chemistry 23 (2017) 7087-7092.  doi: 10.1002/chem.201700572

    35. [35]

      Y. Yin, Q. Fei, W. Liu, et al., Angew. Chem. Int. Ed. 58 (2019) 4880-4885.  doi: 10.1002/anie.201813827

    36. [36]

      P. Lin, H. Yao, J. Zha, Y. Zhao, C. Wu, ChemBioChem 20 (2019) 1514-1518.  doi: 10.1002/cbic.201800788

    37. [37]

      P. Yang, X. Wang, B. Li, et al., Chem. Sci. 12 (2021) 5804-5810.  doi: 10.1039/d1sc00789k

    38. [38]

      W. Muramatsu, T. Hattori, H. Yamamoto, J. Am. Chem. Soc. 141 (2019) 12288-12295.  doi: 10.1021/jacs.9b03850

    39. [39]

      Y. Sun, G. Lu, J.P. Tam, Org. Lett. 3 (2001) 1681-1684.

    40. [40]

      C.H.P. Cheung, J. Xu, C.L. Lee, et al., Chem. Sci. 12 (2021) 7091-7097.  doi: 10.1039/d1sc01174j

    41. [41]

      X. Elduque, E. Pedroso, A. Grandas, Org. Lett. 15 (2013) 2038-2041.  doi: 10.1021/ol400726y

    42. [42]

      P.M. Cromm, S. Schaubach, J. Spiegel, et al., Nat. Commun. 7 (2016) 11300.

    43. [43]

      T. Ikenoue, F.A. Aprile, P. Sormanni, et al., Sci. Rep. 10 (2020) 15280.

    44. [44]

      J. Zhang, J. Kemmink, D.T. Rijkers, R.M. Liskamp, Chem. Commun. 49 (2013) 4498-4500.  doi: 10.1039/c3cc40628h

    45. [45]

      W. Lian, P. Upadhyaya, C.A. Rhodes, Y. Liu, D. Pei, J. Am. Chem. Soc. 135 (2013) 11990-11995.  doi: 10.1021/ja405106u

    46. [46]

      H. vandeLangemheen, V. Korotkovs, J. Bijl, et al., ChemBioChem 18 (2017) 387-395.  doi: 10.1002/cbic.201600612

    47. [47]

      S. Fodor, J. Read, M. Pirrung, et al., Science 251 (1991) 767-773.  doi: 10.1126/science.1990438

    48. [48]

      A. Furka, F. Sebestyen, M. Asgedom, G. Dibo, Int. J. Pept. Protein Res. 37 (1991) 487-493.

    49. [49]

      K.S. Lam, S.E. Salmon, E.M. Hersh, et al., Nature 354 (1991) 82-84.

    50. [50]

      R. Liu, J. Marik, K.S. Lam, J. Am. Chem. Soc. 124 (2002) 7678-7680.

    51. [51]

      S.H. Joo, Q. Xiao, Y. Ling, B. Gopishetty, D. Pei, J. Am. Chem. Soc. 128 (2006) 13000-13009.  doi: 10.1021/ja063722k

    52. [52]

      Z.J. Gartner, B.N. Tse, R. Grubina, et al., Science 305 (2004) 1601-1605.

    53. [53]

      C.J. Stress, B. Sauter, L.A. Schneider, T. Sharpe, D. Gillingham, Angew. Chem. Int. Ed. 58 (2019) 9570-9574.  doi: 10.1002/anie.201902513

    54. [54]

      Z. Zhu, A. Shaginian, L.C. Grady, et al., ACS Chem. Biol. 13 (2018) 53-59.  doi: 10.1021/acschembio.7b00852

    55. [55]

      Y. Onda, G. Bassi, A. Elsayed, et al., Chemistry 27 (2021) 7160-7167.  doi: 10.1002/chem.202005423

    56. [56]

      C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 5 (2009) 502-507.  doi: 10.1038/nchembio.184

    57. [57]

      D.E. Hacker, J. Hoinka, E.S. Iqbal, T.M. Przytycka, M.C.T. Hartman, ACS Chem. Biol. 12 (2017) 795-804.  doi: 10.1021/acschembio.6b01006

    58. [58]

      N. Bionda, R. Fasan, ChemBioChem 16 (2015) 2011-2016.  doi: 10.1002/cbic.201500179

    59. [59]

      R.H. Kimura, A.T. Tran, J.A. Camarero, Angew. Chem. Int. Ed. 118 (2006) 987-990.  doi: 10.1002/ange.200503882

    60. [60]

      S. Luckett, R.S. Garcia, J.J. Barker, et al., J. Mol. Biol. 290 (1999) 525-533.

    61. [61]

      Y. Sako, J. Morimoto, H. Murakami, H. Suga, J. Am. Chem. Soc. 130 (2008) 7232-7234.  doi: 10.1021/ja800953c

    62. [62]

      S. Wada, S. Matsunaga, N. Fusetani, S. Watabe, Mar. Biotechnol. 1 (1999) 337-341.

    63. [63]

      O. Potterat, K. Wagner, G. Gemmecker, et al., J. Nat. Prod. 67 (2004) 1528-1531.  doi: 10.1021/np040093o

    64. [64]

      R.I. Lehrer, A.M. Cole, M.E. Selsted, J. Biol. Chem. 287 (2012) 27014-27019.  doi: 10.1074/jbc.R112.346098

    65. [65]

      G.J. Kim, X. Li, S.H. Kim, et al., Org. Lett. 20 (2018) 7539-7543.  doi: 10.1021/acs.orglett.8b03293

    66. [66]

      S.B. Keysar, N. Gomes, B. Miller, et al., Cancer Res. 80 (2020) 1183-1198.  doi: 10.1158/0008-5472.can-19-3232

    67. [67]

      J. Kobayashi, H. Suzuki, K. Shimbo, K. Takeya, H. Morita, J. Org. Chem. 66 (2001) 6626-6633.

    68. [68]

      H. Morita, K. Shimbo, H. Shigemori, J. Kobayashi, Bioorg. Med. Chem. Lett. 10 (2000) 469-471.

    69. [69]

      Y. Qiu, M. Taichi, N. Wei, et al., J. Med. Chem. 60 (2017) 504-510.  doi: 10.1021/acs.jmedchem.6b01011

    70. [70]

      T. Durek, Q. Kaas, A.M. White, et al., J. Med. Chem. 64 (2021) 9906-9915.  doi: 10.1021/acs.jmedchem.1c00095

    71. [71]

      M.R.U. Karim, Y. In, T. Zhou, et al., Org. Lett. 23 (2021) 2109-2113.  doi: 10.1021/acs.orglett.1c00210

    72. [72]

      T. Miyata, F. Tokunaga, T. Yoneya, et al., J. Biochem. 106 (1989) 663-668.  doi: 10.1093/oxfordjournals.jbchem.a122913

    73. [73]

      G. Bennett, R. Lutz, P. Park, H. Harrison, K. Lee, Cancer Res. 77 (13_Supplement) (2017) 1167.  doi: 10.1158/1538-7445.am2017-1167

    74. [74]

      H. Sato, T. Takino, Y. Okada, et al., Nature 370 (1994) 61-65.

    75. [75]

      K. Zarrabi, A. Dufour, J. Li, et al., J. Biol. Chem. 286 (2011) 33167-33177.

    76. [76]

      U. Banerji, N. Cook, T.J. Evans, et al., J. Clin. Oncol. 36 (15_Supplement) (2018) TPS2610-TPS2610.

    77. [77]

      P. Hart, P. Hommen, A. Noisier, et al., Angew. Chem. Int. Ed. 60 (2021) 1813-1820.  doi: 10.1002/anie.202009749

    78. [78]

      M. Rigby, P. Beswick, G. Mudd, et al., Cancer Res. 79 (13_Supplement) (2019) 4479.

    79. [79]

      P. Upadhyaya, J. Kristensson, J. Lahdenranta, et al., J. Med. Chem. 65 (2022) 9858-9872.  doi: 10.1021/acs.jmedchem.2c00505

    80. [80]

      K.P. Papadopoulos, A. Dowlati, A. Dickson, et al., J. Clin. Oncol. 40 (2022) TPS2689.  doi: 10.1200/jco.2022.40.16_suppl.tps2689

    81. [81]

      J.A. Wells, C.L. McClendon, Nature 450 (2007) 1001-1009.  doi: 10.1038/nature06526

    82. [82]

      S. Guardiola, J. Seco, M. Varese, et al., ChemBioChem 19 (2018) 76-84.  doi: 10.1002/cbic.201700519

    83. [83]

      D.P. Teufel, G. Bennett, H. Harrison, et al., J. Med. Chem. 61 (2018) 2823-2836.  doi: 10.1021/acs.jmedchem.7b01625

    84. [84]

      N.G. Seidah, Z. Awan, M. Chrétien, M. Mbikay, Circ. Res. 114 (2014) 1022-1036.

    85. [85]

      M.S. Sabatine, R.P. Giugliano, A.C. Keech, et al., N. Engl. J. Med. 376 (2017) 1713-1722.  doi: 10.1056/NEJMoa1615664

    86. [86]

      M. Szarek, H.D. White, G.G. Schwartz, et al., J. Am. Coll. Cardiol. 73 (2019) 387-396.

    87. [87]

      C. Alleyne, R.P. Amin, B. Bhatt, et al., J. Med. Chem. 63 (2020) 13796-13824.  doi: 10.1021/acs.jmedchem.0c01084

    88. [88]

      T.J. Tucker, M.W. Embrey, C. Alleyne, et al., J. Med. Chem. 64 (2021) 16770-16800.  doi: 10.1021/acs.jmedchem.1c01599

    89. [89]

      K. Sakamoto, R. Koyama, Y. Kamada, M. Miwa, A. Tani, Biochem. Biophys. Res. Commun. 503 (2018) 1973-1979.

    90. [90]

      A. Angelini, L. Cendron, S. Chen, et al., ACS Chem. Biol. 7 (2012) 817-821.  doi: 10.1021/cb200478t

    91. [91]

      Y. Luo, J.A. Schofield, Z. Na, et al., Cell Chem. Biol. 28 (2021) 463-474.

    92. [92]

      I.R. Rebollo, C. Heinis, Methods. 60 (2013) 46-54.

    93. [93]

      N. Machida, D. Takahashi, Y. Ueno, et al., J. Biol. Chem. 169 (2021) 295-302.  doi: 10.1093/jb/mvaa130

    94. [94]

      M. Plessner, R. Grosse, Curr. Opin. Cell Biol. 56 (2019) 1-6.

    95. [95]

      V. Hurst, K. Shimada, S.M. Gasser, Trends Cell Biol. 29 (2019) 462-476.

    96. [96]

      C.P. Caridi, M. Plessner, R. Grosse, I. Chiolo, Nat. Cell Biol. 21 (2019) 1068-1077.  doi: 10.1038/s41556-019-0379-1

    97. [97]

      M. Moreira, A. Ruggiero, E. Iaccarino, et al., Int. J. Biol. Macromol. 182 (2021) 1455-1462.

    98. [98]

      Y. Li, G. Cai, S. Yuan, et al., Am. J. Transl. Res. 7 (2015) 120.

    99. [99]

      I. Di Bonaventura, X. Jin, R. Visini, et al., Chem. Sci. 8 (2017) 6784-6798.

    100. [100]

      T. Ikenoue, F.A. Aprile, P. Sormanni, M. Vendruscolo, Front. Neurosci. 15 (2021) 151.

    101. [101]

      R. Tang, Y. Song, M. Shi, et al., Bioconjug. Chem. 32 (2021) 2173-2183.  doi: 10.1021/acs.bioconjchem.1c00366

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    3. [3]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    4. [4]

      Dake LiuShuyan LiuFanlei HuZhongtang LiZhongjun LiN-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762

    5. [5]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    6. [6]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    7. [7]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    8. [8]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    9. [9]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    10. [10]

      Si HaJiacheng ZhuHua XiangGuoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192

    11. [11]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    12. [12]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    13. [13]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    14. [14]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    15. [15]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    16. [16]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    17. [17]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    18. [18]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    19. [19]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    20. [20]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

Metrics
  • PDF Downloads(27)
  • Abstract views(420)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return