Citation: Zhiping Liu, Fanny Demontrond, Anne Imberty, Andrew C.-H. Sue, Sébastien Vidal, Hongxia Zhao. Rim-differentiation vs. mixture of constitutional isomers: A binding study between pillar[5]arene-based glycoclusters and lectins from pathogenic bacteria[J]. Chinese Chemical Letters, ;2023, 34(2): 107872. doi: 10.1016/j.cclet.2022.107872 shu

Rim-differentiation vs. mixture of constitutional isomers: A binding study between pillar[5]arene-based glycoclusters and lectins from pathogenic bacteria

    This article is dedicated to Sir Fraser Stoddart on the occasion of his 80th birthday.
    * Corresponding authors.
    ** Corresponding author at: CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, Gif-sur-Yvette 91198, France.
    E-mail addresses: andrewsue@xmu.edu.cn (A.C.-H. Sue), msebastien.vidal@cnrs.fr (S. Vidal), zhaohongxia@tju.edu.cn (H. Zhao).
    1 These authors contributed equally to this work.
  • Received Date: 9 August 2022
    Revised Date: 26 September 2022
    Accepted Date: 29 September 2022
    Available Online: 1 October 2022

Figures(4)

  • Macrocycle-based glycoclusters, on account of their promising anti-adhesive properties against bacteria, are potential therapeutic alternatives to classic antibiotics through the much less explored anti-adhesive strategy. In this study, a series of constitutionally-pure pentavalent glycoclusters was prepared by conjugating assorted azido-carbohydrates onto a penta-propargyl rim-differentiated pillar[5]arene (RD-P[5]) scaffold through Cu(I)-catalyzed azide–alkyne cycloaddition "click" reactions. Their binding towards therapeutically relevant bacterial lectins, such as LecA and LecB from Pseudomonas aeruginosa and concanavalin A (ConA), were evaluated subsequently by isothermal titration calorimetric studies. Most of these isomer-free RD-P[5] pentavalent glycoclusters, except the fucosylated ones, display good affinities to lectins. Nonetheless, the dissociation constants observed are similar to those displayed by an analogous pentavalent glycocluster consisting of four P[5] constitutional isomers, in which the RD-P[5] component merely accounts for 7% in the mixture. Our results revealed that high constitutional purity is not essential for achieving effective multivalent interactions between P[5]-based glycoclusters and lectins, presumably as a result of the conformationally labile nature of the P[5] scaffold. This information provides valuable design principles for low-cost and facile syntheses of glycosylated P[5]s for biomedical applications.
  • 加载中
    1. [1]

      A. Varki, R. Cummings, J. Esko, H. Freeze, G.W. Hart, J. Marth, Essentials of Glycobiology, 2nd ed., Cold Spring Harbor Laboratory Press, New York, 1999.

    2. [2]

      P.C. Pang, P.C. Chiu, C.L. Lee, et al., Science 333 (2011) 1761-1764.  doi: 10.1126/science.1207438

    3. [3]

      A. Varki, Glycobiology 3 (1993) 97-130.  doi: 10.1093/glycob/3.2.97

    4. [4]

      Y.C. Lee, R.T. Lee, Acc. Chem. Res. 28 (1995) 321-327.  doi: 10.1021/ar00056a001

    5. [5]

      B. Ernst, G.W. Hart, P. Sinaÿ, Carbohydrates in Chemistry and Biology, Wiley-VCH, Weinheim, 2000.

    6. [6]

      S. Andre, F. Sansone, H. Kaltner, et al., ChemBioChem 9 (2008) 1649-1661.  doi: 10.1002/cbic.200800035

    7. [7]

      A.S.A. Mohammed, M. Naveed, N. Jost, J. Polym. Environ. 29 (2021) 2359-2371.  doi: 10.1007/s10924-021-02052-2

    8. [8]

      I. Pramudya, H. Chung, Biomater. Sci. 7 (2019) 4848-4872.  doi: 10.1039/c9bm01385g

    9. [9]

      Y. Kim, J.Y. Hyun, I. Shin, Chem. Soc. Rev. 50 (2021). 10567–10593.  doi: 10.1039/d0cs01606c

    10. [10]

      A. Imberty, Y.M. Chabre, R. Roy, Chem. Eur. J. 14 (2008) 7490-7499.  doi: 10.1002/chem.200800700

    11. [11]

      F. Seidi, R. Jenjob, T. Phakkeeree, D. Crespy, J. Control. Release 284 (2018) 188-212.  doi: 10.1016/j.jconrel.2018.06.026

    12. [12]

      A. Bernardi, J. Jiménez-Barbero, A. Casnati, et al., Chem. Soc. Rev. 42 (2013) 4709-4727.  doi: 10.1039/C2CS35408J

    13. [13]

      S. Cecioni, A. Imberty, S. Vidal, Chem. Rev. 115 (2015) 525-561.  doi: 10.1021/cr500303t

    14. [14]

      V. Verez-Bencomo, V. Fernández-Santana, E. Hardy, et al., Science 305 (2004) 522-525.  doi: 10.1126/science.1095209

    15. [15]

      A. Imberty, M. wimmerová, E.P. Mitchell, N. Gilboa-Garber, Microbes Infect. 6 (2004) 221-228.  doi: 10.1016/j.micinf.2003.10.016

    16. [16]

      N. Gilboa-Garber, Methods Enzymol. 83 (1982) 378-385.

    17. [17]

      G. Cioci, E.P. Mitchell, C. Gautier, et al., FEBS Lett. 555 (2003) 297-301.  doi: 10.1016/S0014-5793(03)01249-3

    18. [18]

      T. Branson, T. McAllister, J. Garcia-Hartjes, et al., Angew. Chem. Int. Ed. 126 (2014).  doi: 10.1002/anie.201404397

    19. [19]

      S. Kuhaudomlarp, L. Cerofolini, S. Santarsia, et al., Chem. Sci. 11 (2020) 12662-12670.  doi: 10.1039/d0sc03741a

    20. [20]

      D. Boffoli, F. Bellato, G. Avancini, et al., Drug Deliv. Transl. Res. 12 (2021) 1-23.

    21. [21]

      C. O'Reilly, S. Blasco, B. Parekh, et al., RSC Adv. 11 (2021) 16318-16325.  doi: 10.1039/d0ra05107a

    22. [22]

      G. Paulíková, J. Houser, M. Kašáková, et al., Sci. Rep. 9 (2019) 1-12.  doi: 10.1038/s41598-018-37186-2

    23. [23]

      K. Chakroun, M. Taouai, V. Porkolab, et al., J. Med. Chem. 64 (2021) 14332-14343.  doi: 10.1021/acs.jmedchem.1c00818

    24. [24]

      G.M.L. Consoli, G. Granata, V. Cafiso, S. Stefani, C. Geraci, Tetrahedron Lett. 52 (2011) 5831-5834.  doi: 10.1016/j.tetlet.2011.08.142

    25. [25]

      S. Cecioni, R. Lalor, B. Blanchard, et al., Chemistry 15 (2009) 13232-13240.  doi: 10.1002/chem.200901799

    26. [26]

      S. Cecioni, S. Faure, U. Darbost, et al., Chem. Eur. J. 17 (2011) 2146-2159.  doi: 10.1002/chem.201002635

    27. [27]

      D. Sicard, S. Cecioni, M. Iazykov, et al., Chem. Commun. 47 (2011) 9483-9485.  doi: 10.1039/c1cc13097h

    28. [28]

      S. Cecioni, S.E. Matthews, H. Blanchard, et al., Carbohydr. Res. 356 (2012) 132-141.  doi: 10.1016/j.carres.2012.02.006

    29. [29]

      A.M. Boukerb, A. Rousset, N. Galanos, et al., J. Med. Chem. 57 (2014) 10275-10289.  doi: 10.1021/jm500038p

    30. [30]

      S. Cecioni, J.P. Praly, S.E. Matthews, et al., Chem. Eur. J. 18 (2012) 6250-6263.  doi: 10.1002/chem.201200010

    31. [31]

      A. Dondoni, A. Marra, Chem. Rev. 110 (2010) 4949-4977.  doi: 10.1021/cr100027b

    32. [32]

      Z.H. Soomro, S. Cecioni, H. Blanchard, et al., Org. Biomol. Chem. 9 (2011) 6587-6597.  doi: 10.1039/c1ob05676j

    33. [33]

      T. Furuike, S. Aiba, S.I. Nishimura, Tetrahedron 56 (2000) 9909-9915.  doi: 10.1016/S0040-4020(00)00962-5

    34. [34]

      Y.M. Chabre, R. Roy, Chem. Soc. Rev. 42 (2013) 4657-4708.  doi: 10.1039/c3cs35483k

    35. [35]

      Y. Chen, H. Vedala, G.P. Kotchey, et al., ACS Nano. 6 (2012) 760-770.  doi: 10.1021/nn2042384

    36. [36]

      H. Vedala, Y. Chen, S. Cecioni, et al., Nano Lett. 11 (2011) 170-175.  doi: 10.1021/nl103286k

    37. [37]

      D. Sicard, Y. Chevolot, E. Souteyrand, et al., J. Mol. Recognit. 26 (2013) 694-699.  doi: 10.1002/jmr.2333

    38. [38]

      J.F. Nierengarten, J. Iehl, V. Oerthel, et al., Chem. Commun. 46 (2010) 3860-3862.  doi: 10.1039/c0cc00034e

    39. [39]

      M. Durka, K. Buffet, J. Iehl, et al., Chem. Commun. 47 (2011) 1321-1323.  doi: 10.1039/C0CC04468G

    40. [40]

      I. Nierengarten, J.F. Nierengarten, Chem. Asian J. 9 (2014) 1436-1444.  doi: 10.1002/asia.201400133

    41. [41]

      A. Muñoz, D. Sigwalt, B.M. Illescas, et al., Nat. Chem. 8 (2016) 50-57.  doi: 10.1038/nchem.2387

    42. [42]

      J. Luczkowiak, A. Munoz, M. Sanchez-Navarro, et al., Biomacromolecules 14 (2013) 431-437.  doi: 10.1021/bm3016658

    43. [43]

      M. Durka, K. Buffet, J. Iehl, et al., Chem. Eur. J. 18 (2012) 641-651.  doi: 10.1002/chem.201102052

    44. [44]

      M. Sánchez-Navarro, A. Muñoz, B.M. Illescas, J. Rojo, N. Martín, Chem. Eur. J. 17 (2011) 766-769.  doi: 10.1002/chem.201002816

    45. [45]

      P. Compain, C. Decroocq, J. Iehl, et al., Angew. Chem. Int. Ed. 122 (2010) 5889-5892.  doi: 10.1002/ange.201002802

    46. [46]

      R. Rísquez-Cuadro, J.M. Garcia Fernandez, J.F. Nierengarten, C. Ortiz Mellet, Chem. Eur. J. 19 (2013) 16791-16803.  doi: 10.1002/chem.201303158

    47. [47]

      S. Cecioni, V. Oerthel, J. Iehl, et al., Chem. Eur. J. 17 (2011) 3252-3261.  doi: 10.1002/chem.201003258

    48. [48]

      T. Mohy El Dine, R. Jimmidi, A. Diaconu, et al., J. Med. Chem. 64 (2021) 14728-14744.  doi: 10.1021/acs.jmedchem.1c01241

    49. [49]

      K. Buffet, I. Nierengarten, N. Galanos, et al., Chem. Eur. J. 22 (2016) 2955-2963.  doi: 10.1002/chem.201504921

    50. [50]

      S.P. Vincent, K. Buffet, I. Nierengarten, A. Imberty, J.F. Nierengarten, Chem. Eur. J. 22 (2016) 88-92.  doi: 10.1002/chem.201504110

    51. [51]

      N. Galanos, E. Gillon, A. Imberty, S.E. Matthews, S. Vidal, Org. Biomol. Chem. 14 (2016) 3476-3481.  doi: 10.1039/C6OB00220J

    52. [52]

      L.T. Wu, C. Han, X.B. Jing, Y. Yao, Chin. Chem. Lett. 32 (2021) 3322-3330.  doi: 10.1016/j.cclet.2021.04.046

    53. [53]

      G.P. Sun, L.T. Pu, S. Pangannaya, et al., Front. Chem. 7 (2019), 743.  doi: 10.3389/fchem.2019.00743

    54. [54]

      K. Wang, X. Tian, J. H. Jordan, et al., Chin. Chem. Lett. 33 (2022) 89-96.  doi: 10.1016/j.cclet.2021.06.026

    55. [55]

      T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 130 (2008) 5022-5023.  doi: 10.1021/ja711260m

    56. [56]

      M. Xue, Y. Yang, X.D. Chi, Z.B. Zhang, F.H. Huang, Acc. Chem. Res. 45 (2012) 1294-1308.  doi: 10.1021/ar2003418

    57. [57]

      I. Nierengarten, M. Holler, M. Rémy, et al., Molecules 26 (2021) 2358.  doi: 10.3390/molecules26082358

    58. [58]

      K. Shang, Y. Wang, Y.C. Lu, Isr. J. Chem. 58 (2018) 1241-1245.  doi: 10.1002/ijch.201800080

    59. [59]

      X.W. Wu, Y. Zhang, Y.C. Lu, et al., J. Mater. Chem. B 5 (2017) 3483-3487.  doi: 10.1039/C7TB00752C

    60. [60]

      X. Liu, W. Shao, Y.J. Zheng, et al., Chem. Commun. 53 (2017) 8596-8599.  doi: 10.1039/C7CC04932C

    61. [61]

      P. Demay-Drouhard, K. Du, K. Samanta, et al., Org. Lett. 21 (2019) 3976-3980.  doi: 10.1021/acs.orglett.9b01123

    62. [62]

      K. Du, A.C.H. Sue, Synlett 30 (2019) 2209-2215.  doi: 10.1055/s-0037-1611921

    63. [63]

      M.J. Guo, X.M. Wang, C.H. Zhan, et al., J. Am. Chem. Soc. 140 (2018) 74-77.  doi: 10.1021/jacs.7b10767

    64. [64]

      J.Y. Zhao, W.W. Yang, C.Y. Liang, et al., Chem. Commun. 57 (2021) 11193-11196.  doi: 10.1039/d1cc04840f

    65. [65]

      Y.C. Chang, Y.H. Lv, P. Wei, et al., Adv. Funct. Mater. 27 (2017) 1703083-1703095.  doi: 10.1002/adfm.201703083

    66. [66]

      A. Bianchi, A. Bernardi, J. Org. Chem. 71 (2006) 4565-4577.  doi: 10.1021/jo060409s

    67. [67]

      L. Mahal, A. Sanki, Synlett 2006 (2006) 0455-0459.  doi: 10.1055/s-2006-926264

    68. [68]

      L.M. Artner, L. Merkel, N. Bohlke, et al., Chem. Commun. 48 (2012) 522-524.  doi: 10.1039/C1CC16039G

    69. [69]

      K.S. Bücher, P.B. Konietzny, N.L. Snyder, L. Hartmann, Chem. Eur. J. 25 (2019) 3301-3309.

    70. [70]

      C. Pető, G. Batta, Z. Györgydeák, F. Sztaricskai, Liebigs Ann. Chem. 1991 (1991) 505-507.  doi: 10.1002/jlac.199119910192

    71. [71]

      L. Han, W. Sheng, X. Li, et al., MedChemComm 10 (2019) 598-605.  doi: 10.1039/c9md00036d

    72. [72]

      C. Palomo, J.M. Aizpurua, E. Balentová, et al., Org. Lett. 10 (2008) 2227-2230.  doi: 10.1021/ol8006259

    73. [73]

      S. Wang, N. Galanos, A. Rousset, et al., Carbohydr. Res. 395 (2014) 15-18.  doi: 10.1016/j.carres.2014.06.002

    74. [74]

      K. Du, P. Demay-Drouhard, K. Samanta, et al., J. Org. Chem. 85 (2020) 11368–11374.  doi: 10.1021/acs.joc.0c01464

  • 加载中
    1. [1]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

Metrics
  • PDF Downloads(0)
  • Abstract views(338)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return