Pillar[n]arenes-based materials for detection and separation of pesticides
-
* Corresponding author.
E-mail address: linqi2004@126.com(Q. Lin).
Citation:
Zhong-Di Tang, Xiao-Mei Sun, Ting-Ting Huang, Juan Liu, Bingbing Shi, Hong Yao, You-Ming Zhang, Tai-Bao Wei, Qi Lin. Pillar[n]arenes-based materials for detection and separation of pesticides[J]. Chinese Chemical Letters,
;2023, 34(4): 107698.
doi:
10.1016/j.cclet.2022.07.041
A. Donkor, P. Osei-Fosu, I. Asante, Environ. Sci. Pollut. Res. 23 (2016) 18966–18987.
doi: 10.1007/s11356-016-7317-6
M.C. Camara, E.V.R. Campos, R.A. Monteiro, J. Nanobiotechnol. 17 (2019) 1–19.
doi: 10.1186/s12951-018-0433-3
M. Lykogianni, E. Bempelou, F. Karamaouna, K.A. Aliferis, Sci. Total Environ. 795 (2021) 148625.
doi: 10.1016/j.scitotenv.2021.148625
G. Odukkathil, N. Vasudevan, Environ. Sci. Technol. 12 (2013) 421–444.
C.L. Bird, A.T. Kuhn, Electrochemistry of the viologens, Chem. Soc. Rev 10 (1981) 49–82.
doi: 10.1039/cs9811000049
C. Keawkumay, W. Rongchapo, J. Wittayakun, et al., Mater. Chem. Phys. 238 (2019) 121824–121832.
doi: 10.1016/j.matchemphys.2019.121824
W. Rongchapo, O. Sophiphun, K. Rintramee, S. Prayoonpokarach, J. Wittayakun, Water Sci. Technol. 68 (2013) 863–869.
doi: 10.2166/wst.2013.311
M.A. Aramendía, V. Borau, F.J. Urbano, et al., Food Chem. 97 (2006) 181–188.
doi: 10.1016/j.foodchem.2005.05.005
F.H. Huang, H.W. Gibson, W.S. Bryant, D.S. Nagvekar, F.R. Fronczek, J. Am. Chem. Soc. 125 (2003) 9367–9371.
doi: 10.1021/ja034968h
Q.S. Zong, C.F. Chen, Org. Lett. 8 (2006) 211–214.
doi: 10.1021/ol052325w
K. Wang, D.S. Guo, Y. Liu, et al., J. Med. Chem. 52 (2009) 6402–6412.
doi: 10.1021/jm900811z
M. Zhang, B. Zheng, F.H. Huang, Chem. Commun. 47 (2011) 10103–10105.
doi: 10.1039/c1cc13834k
I.M. Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, M. Megharaj, Sci. Total Environ. 771 (2020) 134612.
Y. Luo, W. Zhang, X. Xiao, et al., Chin. Chem. Lett. 32 (2021) 367–370.
doi: 10.1016/j.cclet.2020.02.023
C.L. Tao, B. Chen, B.Z. Tang, et al., Chem. Commun. 53 (2017) 9975–9978.
doi: 10.1039/C7CC05031C
N.S. Sulaiman, K. Rovina, V.M. Joseph, J. Consum. Prot. Food Saf. 14 (2019) 209–221.
doi: 10.1007/s00003-019-01242-4
H. Dai, Z.Y. Deng, Y.B. Zeng, et al., J. Hazard. Mater. 398 (2020) 122845.
B.X. Wang, H.J. Wang, R. Yuan, et al., Chem. Commun. 52 (2016) 5049–5052.
doi: 10.1039/C5CC10491B
W. Li, Z.M. Zhang, J. Chen, et al., J. Hazard. Mater. 384 (2020) 121241.
doi: 10.1016/j.jhazmat.2019.121241
H. Zhang, Y.W. Yang, F. Liang, Chin. Chem. Lett. 33 (2022) 1537–1540.
doi: 10.1016/j.cclet.2021.09.002
X. Zhang, J.X. Zhang, R.B. Wang, J. Agric. Food Chem. 67 (2019) 7783–7792.
doi: 10.1021/acs.jafc.9b00764
E. Mallat, C. Barzen, R. Abuknesha, G. Gauglitz, D. Barceló, Anal. Chim. 427 (2001) 165–171.
doi: 10.1016/S0003-2670(00)01016-3
J. Chen, X.W. Min, Q.H. Chen, et al., Anal. Chim. Acta 879 (2015) 41–47.
doi: 10.1016/j.aca.2015.03.058
N.C. Posecion, E.M. Ostrea, D.M. Bielawski, J. Chromatogr. B 862 (2008) 93–99.
doi: 10.1016/j.jchromb.2007.11.002
Y.G. Zou, Y.Y. Shi, L.L. Wang, et al., J. Chromatogr. B 879 (2011) 1809–1812.
doi: 10.1016/j.jchromb.2011.05.004
L. Zhang, X.A. Liu, K.D. Gillis, T.E. Glass, Angew. Chem. Int. Ed. 58 (2019) 7611–7614.
doi: 10.1002/anie.201810919
H. Yao, Q. Zhou, Q. Lin, et al., Chin. Chem. Lett. 31 (2020) 1231–1234.
doi: 10.1016/j.cclet.2019.09.046
M. Schäferling, Angew. Chem. Int. Ed. 51 (2012) 3532–3554.
doi: 10.1002/anie.201105459
Y.X. Liu, L. Lonappanb, S.K. Brarb, S.M. Yang, Sci. Total Environ. 35 (2012) 64–74.
M.K. Arfanis, P. Adamou, P. Falaras, et al., Chem. Eng. J. 310 (2017) 525– 536.
doi: 10.1016/j.cej.2016.06.098
J.S. Liu, C.J. Feng, S.M. Wang, Spe. Purif. Technol. 288 (2022) 120644.
doi: 10.1016/j.seppur.2022.120644
R. Bhardwaj Chansi, K. Hadwani, T. Basu, Nanosci. Sustain. Agric. (2019) 75–99.
W.T. Xu, X. Xiao, J.X. Liu, et al., J. Agric. Food Chem. 69 (2021) 584–591.
doi: 10.1021/acs.jafc.0c05577
J.W. Li, Y.L. Wang, X.J. Li, S. Yan, S.Y. Pan, Food Chem. 192 (2016) 260–267.
doi: 10.1016/j.foodchem.2015.07.018
A. Alsbaiee, D.E. Helbling, W.R. Dichtel, et al., Nature 529 (2016) 190–194.
doi: 10.1038/nature16185
Y.Y. Chen, T.B. Wei, Q. Lin, et al., Chem. Commun. 57 (2021) 284–301.
doi: 10.1039/D0CC05776B
S.Y. Liu, T.S. Yan, Q.X. Wu, Z. Xu, J. Han, Chin. Chem. Lett. 33 (2022) 239–242.
doi: 10.1016/j.cclet.2021.07.023
J.F. Chen, Q. Lin, Y.M. Zhang, T.B. Wei, H. Yao, Chem. Commun. 53 (2017) 13296–13311.
doi: 10.1039/C7CC08365C
Y.M. Cai, L.H. Yuan, W. Feng, et al., J. Hazard. Mater. 405 (2021) 124214.
doi: 10.1016/j.jhazmat.2020.124214
K.Y. Wang, X.Y. Hu, L.Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 9205–9214.
doi: 10.1002/anie.202010150
T. Ogoshi, T.A. Yoshiaki, N. Yamagishi, Chem. Rev. 116 (2016) 7937–8002.
doi: 10.1021/acs.chemrev.5b00765
K.Y. Wang, L.Y. Wang, X.Y. Hu, et al., Chin. Chem. Lett. 33 (2022) 89–96.
doi: 10.1016/j.cclet.2021.06.026
W. Shao, X. Liu, L.Y. Wang, et al., Chem. Commun. 54 (2018) 9462–9465.
doi: 10.1039/C8CC05180A
M. Xue, Y. Yang, X.D. Chi, Z.B. Zhang, F.H. Huang, Acc. Chem. Res. 45 (2012) 1294–1308.
doi: 10.1021/ar2003418
Y.Y. Fang, W. Feng, L.H. Yuan, et al., RSC Adv. 3 (2013) 12376–12383.
doi: 10.1039/c3ra41251b
T. Adiri, D. Marcianoz, Y. Cohen, Chem. Commun. 49 (2013) 7082–7084.
doi: 10.1039/c3cc43253j
H.C. Zhang, N.L. Strutt, J.F. Stoddart, et al., Chem. Commun. 47 (2011) 11420–11422.
doi: 10.1039/c1cc14934b
C. Li, L. Zhao, X. Jia, et al., Chem. Commun. 46 (2010) 9016–9018.
doi: 10.1039/c0cc03575k
Y. Ma, W. Chen, F.H. Huang, et al., Chem. Commun. 47 (2011) 12340–12342.
doi: 10.1039/c1cc15660h
M. Tang, Q. Bian, Y. Liu, et al., RSC Adv. 10 (2020) 35136–35140.
doi: 10.1039/D0RA06657E
L.Q. Shangguan, B.B. Shi, F.H. Huang, et al., Tetrahedron Lett. 60 (2019) 150949.
doi: 10.1016/j.tetlet.2019.150949
Y.M. Yang, Q. Zhao, W. Feng, F.Y. Li, Chem. Rev. 113 (2013) 192–270.
doi: 10.1021/cr2004103
T. Ogoshi, Y. Nakamoto T. Yamagishi, Chem. Rev. 116 (2016) 7937–8002.
doi: 10.1021/acs.chemrev.5b00765
N.L. Strutt, H.C. Zhang, S.T. Schneebeli, J.F. Stoddart, Acc. Chem. Res. 47 (2014) 2631–2642.
doi: 10.1021/ar500177d
X.Y. Lou, Y.W. Yang, Adv. Mater. 32 (2020) 2003263.
doi: 10.1002/adma.202003263
Z.H. Zhang, Y.M. Zhang, T.B. Wei, et al., Chin. Chem. Lett. 34 (2023) 107085.
doi: 10.1016/j.cclet.2021.12.077
C.G. Hou, L.J. Liu, X.J. Lao, et al., Chin. Chem. Lett. 32 (2020) 214–217.
C.J. Li, Q.Q. Xu, J. Li, F.N. Yao, X.S. Jia, Org. Biomol. Chem. 8 (2010) 1568–1576.
doi: 10.1039/b920146g
F.H. Huang, K.A. Switek, H.W. Gibson, Chem. Commun. (2005) 3655–3657.
H.W. Gibson, H. Wang, C. Slebodnick, Org. Chem. 72 (2007) 3381–3393.
doi: 10.1021/jo070030l
H. Zhang, B. Zhou, H. Li, D.H. Qu, H.J. Tian, Org. Chem. 78 (2013) 2091–2098.
doi: 10.1021/jo302107a
X.D. Chi, M. Xue, Y. Yao, F.H. Huang, Org. Lett. 15 (2013) 4722–4725.
doi: 10.1021/ol402048n
R. Wang, Y. Sun, H.B. Li, et al., Angew. Chem. 129 (2017) 5378–5382.
doi: 10.1002/ange.201702175
Q.Q. Song, H.B. Li, G.F. Yang, et al., Chem. Commun. 56 (2020) 7593–7596.
doi: 10.1039/D0CC02187C
P. Wang, Y. Yao, M. Xue, Chem. Commun. 50 (2014) 5064–5067.
doi: 10.1039/C4CC01403K
Y.J. Ma, F.H. Huang, J.L. Hou, et al., Org. Lett. 14 (2012) 1532–1535.
doi: 10.1021/ol300263z
G.C. Yu, X.Y. Zhou, F.H. Huang, et al., J. Am. Chem. Soc. 134 (2012) 19489–19497.
doi: 10.1021/ja3099905
W.B. Hu, C.D. Xie, K. Wen, et al., J. Org. Chem. 80 (2015) 7994–8000.
doi: 10.1021/acs.joc.5b01038
Y.F. Zhang, H. Yao, Q. Lin, et al., Sens. Actuator. B: Chem. 327 (2021) 128885.
doi: 10.1016/j.snb.2020.128885
M. Brigante, P.C. Schulz, J. Colloid Interface Sci. 363 (2011) 355–361.
doi: 10.1016/j.jcis.2011.07.061
C. Huang, W.C. Hung, K.Y.A. Lin, et al., Polym. Degrad. Stab. 161 (2019) 206–212.
doi: 10.1016/j.polymdegradstab.2019.01.023
S.T. Hsu, T.C. Pan, Bioresour. Technol. 98 (2007) 3617–3621.
doi: 10.1016/j.biortech.2006.11.060
Z.H. Wang, H. Yao, Q. Lin, et al., Mater. Sci. Eng. C 118 (2021) 11358–11364.
S. Lan, S.J. Zhan, J.M. Ding, J.Q. Ma, D. Ma, J. Mater. Chem. A 5 (2017) 2514–2518.
doi: 10.1039/C6TA09266G
X.C. Qian, X.J. Zhou, L. Yang, et al., Microchemical J. 150 (2019) 104203.
doi: 10.1016/j.microc.2019.104203
X.P. Tan, Y.W. Chen, Q. Gou, et al., Talanta 195 (2019) 472–479.
doi: 10.1016/j.talanta.2018.11.099
X.W. Mao, T. Liu, H.B. Li, et al., Chem. Commun. 52 (2016) 4385–4388.
doi: 10.1039/C6CC00949B
T. Zhou, N. Song, H. Yu, Y.W. Yang, Langmuir 31 (2015) 1454–1461.
doi: 10.1021/la5050199
J. Zhang, R.A. Lucas, H.B. Li, et al., Anal. Chem. 93 (2021) 5430–5436.
doi: 10.1021/acs.analchem.0c05033
X.P. Tan, T. Huang, G.F. Zhao, et al., ACS Sustain. Chem. Eng. 7 (2019) 20051–20059.
doi: 10.1021/acssuschemeng.9b05804
G. Yu, M. Xue, F.H. Huang, et al., J. Am. Chem. Soc. 134 (2012) 13248–13251.
doi: 10.1021/ja306399f
H. Tong, Y.N. Hong, B.Z. Tang, et al., Chem. Commun. 35 (2006) 3705–3707.
P. Wang, X.Z. Yan, F.H. Huang, Chem. Commun. 50 (2014) 5017–5019.
doi: 10.1039/c4cc01560f
Y.H. Guo, F. Gao, K. Wen, et al., ACS Appl. Mater. Interfaces 13 (2021) 16507–16515.
doi: 10.1021/acsami.1c02583
S.N. Talapaneni, D. Kim, A. Coskun, et al., Chem. Mater. 28 (2016) 4460–4466.
doi: 10.1021/acs.chemmater.6b01667
W. Cui, H. Tang, D. Cao, et al., Macromol. Rapid Commun. 38 (2017) 1700161.
doi: 10.1002/marc.201700161
X. Li, Z. Li, Y.W. Yang, Adv. Mater. 30 (2018) 1800177.
doi: 10.1002/adma.201800177
Z. Wang, H. Yang, K. Wen, et al., ACS Appl. Polym. Mater. 2 (2020) 5566–5573.
doi: 10.1021/acsapm.0c00896
B.B. Shi, H.X. Guan, F.H. Huang, et al., J. Mater. Chem. A 5 (2017) 24217–24222.
doi: 10.1039/C7TA08894A
H.Q. Ju, F.B. Zhu, H. Xing, Z.L. Wu, F.H. Huang, Macromol. Rapid Commun. 38 (2017) 1700232.
doi: 10.1002/marc.201700232
K.S. Novoselov, A.K. Geim, A.A. Firsov, et al., Nature 438 (2005) 197.
doi: 10.1038/nature04233
Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201–204.
doi: 10.1038/nature04235
C.S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 111 (2011) 7981–8006.
doi: 10.1021/cr2002646
L. Hromadkova, Z. Bilkova, M. Slovakova, et al., Analyst 143 (2018) 466–474.
doi: 10.1039/C7AN01508A
Z. Liu, J.T. Robinson, X.M. Sun, H. Dai, J. Am. Chem. Soc. 130 (2008) 10876–10877.
doi: 10.1021/ja803688x
X.M. Sun, Z. Lu, H.J. Dai, et al., Nano Res. 1 (2008) 203–212.
doi: 10.1007/s12274-008-8021-8
G.C. Yu, Q.Z. Zhou, F.H. Huang, et al., Chem. Commun. 48 (2012) 2958–2960.
doi: 10.1039/c2cc00125j
H. Li, F. Qu, Mater. Chem. 17 (2007) 3536–3544.
doi: 10.1039/b705743a
G.S. Such, A.P.R. Johnston, F. Caruso, Chem. Soc. Rev. 40 (2011) 19–29.
doi: 10.1039/C0CS00001A
J.B. Schlenoff, Langmuir 25 (2009) 14007–14010.
doi: 10.1021/la901950c
X. Zhang, H. Chen, H.Y. Zhang, Chem. Commun. 14 (2007) 1395–1405.
Y. Li, X. Wang, J.Q. Sun, Chem. Soc. Rev. 41 (2012) 5998–6009.
doi: 10.1039/c2cs35107b
B. Yuan, J.F. Xu, X. Zhang, et al., ACS Appl. Mater. Interfaces 8 (2016) 3679–3685.
doi: 10.1021/acsami.5b08854
G.G. Qing, X. Wang, L. Jiang, H. Fuchs, T. Sun, Soft Matter 5 (2009) 2759–2765.
doi: 10.1039/b900504h
G.G. Qing, T. Sun, Angew. Chem. Int. Ed. 53 (2014) 930–932.
doi: 10.1002/anie.201306660
N.M. Feng, H.Y. Zhao, J.Y. Zhan, D.M. Tian, H.B. Li, Org. Lett. 14 (2012) 1958–1961.
doi: 10.1021/ol203226q
L. Luo, L. Jiang, H.B. Li, et al., Angew. Chem. Int. Ed. 55 (2016) 12713–12716.
doi: 10.1002/anie.201603906
T.L. Xu, W. Gao, L.P. Xu, X.J. Zhang, S.T. Wang, Adv. Mater. 29 (2017) 1603250.
doi: 10.1002/adma.201603250
I. Ortiz-Rivera, T.M. Courtney, A. Sen, Adv. Funct. Mater. 26 (2016) 2135–2142.
doi: 10.1002/adfm.201504619
D. Patra, S. Sengupta, A. Sen, et al., Nanoscale 5 (2013) 1273–1283.
doi: 10.1039/C2NR32600K
R. Varshney, M. Alam, C. Agashe, R. Joseph, D. Patra, Chem. Commun. 56 (2020) 9284–9287.
doi: 10.1039/D0CC04282J
I. Vlassiouk, T.R. Kozel, Z.S. Siwy, J. Am. Chem. Soc. 131 (2009) 8211–8220.
doi: 10.1021/ja901120f
Z. Long, S.S. Zhan, F. Xia, et al., Anal. Chem. 90 (2018) 577–588.
doi: 10.1021/acs.analchem.7b04737
X.P. Zhao, S.S. Wang, M.R. Younis, X.H. Xia, C. Wang, Anal. Chem. 90 (2018) 896–902.
doi: 10.1021/acs.analchem.7b03818
H.B. Aiyappa, J. Thote, D.B. Shinde, R. Banerjee, S. Kurungot, Chem. Mater. 28 (2016) 4375–4379.
doi: 10.1021/acs.chemmater.6b01370
S.Y. Ding, J. Gao, W. Wang, et al., J. Am. Chem. Soc. 133 (2011) 19816–19822.
doi: 10.1021/ja206846p
B.J. Yao, F. Li, Y.B. Dong, et al., ACS Appl. Mater. Interfaces 10 (2018) 20448–20457.
doi: 10.1021/acsami.8b04022
C. Wang, Z. Wang, X. Zhang, Acc. Chem. Res. 45 (2012) 608–618.
doi: 10.1021/ar200226d
Y. Sun, W.X. Fu, C.Y. Chen, J. Wang, Y. Yao, Chem. Commun. 53 (2017) 3725–3728.
doi: 10.1039/C7CC00291B
T. Ogoshi, M. Hashizume, T. Yamagishi, Y. Nakamoto, Chem. Commun. 46 (2010) 3708–3710.
doi: 10.1039/c0cc00348d
Tianxia Chen , Yunhui Chen , Weiwei Li , Peipei Cen , Yan Guo , Jin Zhang , Cunding Kong , Xiangyu Liu . Fabricating AuAg-nanoparticles/ZIF-8 composites for selective detection and efficient extraction of dinitroaniline pesticides. Chinese Chemical Letters, 2025, 36(8): 110214-. doi: 10.1016/j.cclet.2024.110214
Xueru Zhao , Aopu Wang , Shimin Wang , Zhijie Song , Li Ma , Li Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205
Jingyu Chen , Sha Wu , Yuhao Wang , Jiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102
Yarui Li , Huangjie Lu , Yingzhe Du , Jie Qiu , Peng Lin , Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562
Qimeng Zhu , Juan Xiao , Changyi Deng , Tingting Huang , Hui Ding , Li Zhang , Guancheng Xu . Highly active transition metal phosphides for urea oxidation: Design strategies, application advances, and perspectives. Chinese Journal of Structural Chemistry, 2025, 44(9): 100651-100651. doi: 10.1016/j.cjsc.2025.100651
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Yao-Yu Ma , Wen-Juan Shi , Gang-Ding Wang , Xin Liu , Lei Hou , Yao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729
Sha-Sha Meng , Xiao-Yi Fu , Hai-Yue Wei , Ming Xu , Zhi-Yuan Gu . Improving the separation ability of MOF-based stationary phases by increasing the thermodynamic differentiation of analytes. Chinese Chemical Letters, 2025, 36(9): 110720-. doi: 10.1016/j.cclet.2024.110720
He Zhao , Baiyang Fan , Siwen Hu , Xingliang Liu , Bo Tang , Pengchong Xue . Guest-triggered gate-opening of flexible hydrogen-bonded framework for separation of styrene and ethylbenzene. Chinese Chemical Letters, 2025, 36(10): 111005-. doi: 10.1016/j.cclet.2025.111005
Qiuting Zhang , Fan Wu , Jin Liu , Hang Su , Yanhui Zhong , Zian Lin . Facile synthesis of single-crystal 3D covalent organic frameworks as stationary phases for high-performance liquid chromatographic separation. Chinese Chemical Letters, 2025, 36(8): 110649-. doi: 10.1016/j.cclet.2024.110649
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Kun Zhang , Xin-Yue Lou , Yan Wang , Weiwei Huan , Ying-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
Rui TIAN , Duo LI , Yuan REN , Jiamin CHAI , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389
Rui TIAN , Jiamin CHAI , Junyu CHEN , Yuan REN , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026
Yan-E Zhang , Yingtao Jiang , Yun Zhang , Hu Wang , Zitong Wu , Rui Li , Yumiao Ma , Tao Tu . Enantioselective synthesis of bulky planar-chiral pillar[n]arenes through dynamic kinetic resolution. Chinese Chemical Letters, 2025, 36(12): 111201-. doi: 10.1016/j.cclet.2025.111201
Haokun Yuan , Anjing Liao , Shunhong Chen , Yiming Tian , Yaming Liu , Jian Wu . Pyrimidine derivatives in discovery of pesticides: A review. Chinese Chemical Letters, 2026, 37(2): 111305-. doi: 10.1016/j.cclet.2025.111305