Citation: Peng Shen, Han Lin, Yikai Bao, Haofei Hong, Zhimeng Wu. Synthesis and immunological study of a glycosylated wall teichoic acid-based vaccine against Staphylococcus aureus[J]. Chinese Chemical Letters, ;2023, 34(4): 107679. doi: 10.1016/j.cclet.2022.07.022 shu

Synthesis and immunological study of a glycosylated wall teichoic acid-based vaccine against Staphylococcus aureus

    * Corresponding author.
    E-mail address: zhimengw@hotmail.com (Z. Wu).
  • Received Date: 11 May 2022
    Revised Date: 5 July 2022
    Accepted Date: 12 July 2022
    Available Online: 14 July 2022

Figures(6)

  • Staphylococcus aureus wall teichoic acids (WTAs) are attractive targets for antibacterial vaccine development. In this study, three core glycosylated WTA structure, including α-1,4-GlcNAc, β-1,4-GlcNAc and β-1,3-GlcNAc modified ribitol phosphates containing a linker are chemically synthesized and conjugated with tetanus toxin (TT) carrier protein as vaccine candidates. In vivo immunological studies demonstrate that the synthesized glycosylated WTAs display high immunogenicity and all conjugates provoke strong immune responses and elicit high levels of specific IgG antibodies against the GlcNAc-modified WTA. Furthermore, antibodies elicited by the vaccine candidates remain the capability to recognize S. aureus cells and display significant opsonophagocytic activity to clear S. aureus. This study demonstrates that the core structure of glycosylated WTAs are effective antigens for constructing anti-S. aureus vaccines to prevent and control S. aureus infections.
  • 加载中
    1. [1]

      L.S. Miller, J.S. Cho, Nat. Rev. Immunol. 8 (2011) 505-518.  doi: 10.1038/nri3010

    2. [2]

      C. Li, H. Shen, S. Wang, et al., Chin. Chem. Lett. 29 (2018) 1824-1828.  doi: 10.1016/j.cclet.2018.10.025

    3. [3]

      E.K. Nickerson, T.E. West, N.P. Day, et al., Lancet Infect. Dis. 2 (2009) 130-135.

    4. [4]

      F.R. DeLeo, M. Otto, B.N. Kreiswirth, et al., Lancet 375 (2010) 1557–1568.  doi: 10.1016/S0140-6736(09)61999-1

    5. [5]

      C.P. Harkins, B. Pichon, M. Doumith, et al., Genome Biol. 1 (2017) 130.

    6. [6]

      B.K. Giersing, S.S. Dastgheyb, K. Modjarrad, et al., Vaccine 26 (2016) 2962-2966.

    7. [7]

      R. S. Daum, B. Spellberg, Clin. Infect. Dis. 54 (2012) 560-567.  doi: 10.1093/cid/cir828

    8. [8]

      J.G. Swoboda, J. Campbell, T.C. Meredith, et al., J. Biol. Chem. 11 (2010) 35-45.

    9. [9]

      G.Q. Xia, L. Maier, P. Sanchez-Carballo, et al., J. Biol. Chem. 285 (2010) 13405–13415.  doi: 10.1074/jbc.M109.096172

    10. [10]

      S. Brown, G.Q. Xia, L.G. Luhachack, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 18909–18914.  doi: 10.1073/pnas.1209126109

    11. [11]

      D. Gerlach, Y.L. Guo, C.D. Castro, et al., Nature 563 (2018) 705–709.  doi: 10.1038/s41586-018-0730-x

    12. [12]

      X. Wu, J. Han, G. Gong, et al., FEMS Microbiol. Rev. 45 (2021) fuaa064.  doi: 10.1093/femsre/fuaa064

    13. [13]

      K.H. Park, K. Kurokawa, L. Zheng et al., J. Biol. Chem. 285 (2010) 27167-27175.  doi: 10.1074/jbc.M110.141309

    14. [14]

      D.J. Jung, J.H. An, K. Kurokawa, et al., J. Immunol. 189 (2012) 4951-4959.  doi: 10.4049/jimmunol.1201294

    15. [15]

      K. Kurokawa, D.J. Jung, J.H. An, et al., J. Biol. Chem. 288 (2013) 30956-30968.  doi: 10.1074/jbc.M113.509893

    16. [16]

      J.H. Lee, N.H. Kim, V. Winstel, et al., Infect. Immun. 83 (2015) 4247-4255.  doi: 10.1128/IAI.00767-15

    17. [17]

      J.C. Jung, J.H. Lee, S.A. Kim, et al, Org. Lett. 20 (2018) 4449-4452.  doi: 10.1021/acs.orglett.8b01725

    18. [18]

      R.V. Dalen, M.M. Molendijk, S. Ali, et al., Nature 572 (2019) E1-E2.  doi: 10.1038/s41586-019-1416-8

    19. [19]

      R. Fong, K. Kajihara, M. Chen, et al., mAbs 10 (2018) 979-991.

    20. [20]

      T. Kazue, K. Kenji, M. Patience, et al., PLoS One 8 (2013) 1010-1016.

    21. [21]

      S.J. Feng, C.H. Xiong, S.B. Wang, et al., ACS Infect. Dis. 5 (2019) 1423–1432.  doi: 10.1021/acsinfecdis.9b00103

    22. [22]

      J. Zhao, G. Hu, Y. Huang, et al., Chin. Chem. Lett. 32 (2021) 1331-1340.  doi: 10.1016/j.cclet.2020.10.013

    23. [23]

      H.A.V Kistemaker, G.J. van der Heden van Noort, H.S. Overkleeft, et al., Org. Lett. 9 (2013) 2306-2309.  doi: 10.1021/ol400929c

    24. [24]

      A.R. Parameswar, P. Pornsuriyasak, N.A. Lubanowski, et al., Tetrahedron 40 (2007) 10083-10091.

    25. [25]

      Y. Yamaguchi, S. Ohno, N. Manabe, et al., Molecules 26 (2021) 5471.  doi: 10.3390/molecules26185471

    26. [26]

      H. Lin, H.F. Hong, J. Shi, et al., Chin. Chem. Lett. 32 (2021) 4041-4044.  doi: 10.1016/j.cclet.2021.04.034

    27. [27]

      S. Ali, A. Hendriks, R. van Dalen, et al., Chem. Eur. J. 27 (2021) 10461-10469.  doi: 10.1002/chem.202101242

    28. [28]

      I. Soni, H. Chakrapani, S. Chopra, Genome Announc. 3 (2015) e01015-e01095.

    29. [29]

      M. Dwyer, M. Gadjeva, Opsonophagocytic assay, in: M. Gadjeva (Ed.), The Complement System. Methods in Molecular Biology, Vol 1100, Humana Press, Totowa, 2014, 373-379.

  • 加载中
    1. [1]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    2. [2]

      Yuxin TianMengjun LiYang YangChunhui LiYun PengHaiyin YangMengyuan ZhaoPengfei WuShaobo RuanYuanyu HuangChenguang ShenMinghui Yang . An MPXV mRNA-LNP vaccine candidate elicits protective immune responses against monkeypox virus. Chinese Chemical Letters, 2024, 35(8): 109270-. doi: 10.1016/j.cclet.2023.109270

    3. [3]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    4. [4]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    5. [5]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

Metrics
  • PDF Downloads(4)
  • Abstract views(264)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return