Citation: Wei-Bao He, Sai-Jie Zhao, Jing-Yang Chen, Jun Jiang, Xiang Chen, Xinhua Xu, Wei-Min He. External electrolyte-free electrochemical one-pot cascade synthesis of 4-thiocyanato-1H-pyrazoles[J]. Chinese Chemical Letters, ;2023, 34(2): 107640. doi: 10.1016/j.cclet.2022.06.063 shu

External electrolyte-free electrochemical one-pot cascade synthesis of 4-thiocyanato-1H-pyrazoles

    * Corresponding authors.
    E-mail addresses: xhx1581@hnu.edu.cn (X. Xu), weiminhe@usc.edu.cn (W.-M. He).
  • Received Date: 26 March 2022
    Revised Date: 22 June 2022
    Accepted Date: 23 June 2022
    Available Online: 30 June 2022

Figures(5)

  • A practical synthetic method for 4-thiocyanato-1H-pyrazoles through the electrochemical cascade reaction of hydrazines, 1, 3-diones and NH4SCN under metal-, chemical oxidant- and external electrolyte-free conditions was established. Importantly, both a gram-scale synthesis of 4-thiocyanato-1H-pyrazoles and five one-pot sequential transformations starting from hydrazine were successfully accomplished.
  • 加载中
    1. [1]

      C. Ma, P. Fang, Z.R. Liu, et al., Sci. Bull. 66 (2021) 2412–2429.

    2. [2]

      N. Chen, H.C. Xu, Green Synth. Catal. 2 (2021) 165–178.

    3. [3]

      Z. Yang, Y. Yu, L. Lai, et al., Green Synth. Catal. 2 (2021) 19–26.

    4. [4]

      K. Sun, F. Xiao, B. Yu, W.M. He, Chin. J. Catal. 42 (2021) 1921–1943.

    5. [5]

      J. Zhang, H. Wang, Y. Chen, et al., Chin. Chem. Lett. 31 (2020) 1576–1579.

    6. [6]

      Z. Li, Q. Sun, P. Qian, et al., Chin. Chem. Lett. 31 (2020) 1855–1858.

    7. [7]

      B. Huang, L. Guo, W. Xia, Green Chem. 23 (2021) 2095–2103.

    8. [8]

      J.Y. Chen, H.Y. Wu, Q.W. Gui, et al., Chin. J. Catal. 42 (2021) 1445–1450.

    9. [9]

      K. Niu, L. Ding, P. Zhou, et al., Green Chem. 23 (2021) 3246–3249.

    10. [10]

      Y. Wu, J.Y. Chen, J. Ning, et al., Green Chem. 23 (2021) 3950–3954.

    11. [11]

      J.Y. Chen, C.T. Zhong, Q.W. Gui, et al., Chin. Chem. Lett. 32 (2021) 475–479.

    12. [12]

      J. Jiang, Z. Wang, W.M. He, Chin. Chem. Lett. 32 (2021) 1591–1592.

    13. [13]

      X. Wang, Y. Zhang, K. Sun, J. Meng, B. Zhang, Chin. J. Org. Chem. 41 (2021) 4588–4609.

    14. [14]

      Y. Wu, J.Y. Chen, H.R. Liao, et al., Green Synth. Catal. 2 (2021) 233–236.

    15. [15]

      H. -B. Zhao, J.L. Zhuang, H.C. Xu, ChemSusChem 14 (2021) 1692–1695.

    16. [16]

      W. Li, Y. Tang, W. Ouyang, et al., Chin. J. Org. Chem. 41 (2021) 4766–4772.

    17. [17]

      S. Guo, L. Liu, K. Hu, et al., Chin. Chem. Lett. 32 (2021) 1033–1036.

    18. [18]

      H. Xu, X. Meng, Y. Zheng, J. Luo, S. Huang, Chin. J. Org. Chem. 41 (2021) 4696–4703.

    19. [19]

      Z.L. Wu, J.Y. Chen, X.Z. Tian, et al., Chin. Chem. Lett. 33 (2022) 1501–1504.

    20. [20]

      E.A. Ilardi, E. Vitaku, J.T. Njardarson, J. Med. Chem. 57 (2014) 2832–2842.

    21. [21]

      V. Burmistrov, R. Saxena, D. Pitushkin, et al., J. Med. Chem. 64 (2021) 6621–6633.

    22. [22]

      W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895–1898.

    23. [23]

      J. Zhang, M. She, L. Liu, et al., Org. Lett. 23 (2021) 8396–8401.

    24. [24]

      Y. Sun, R. Fu, S. Lin, et al., Biorg. Med. Chem. 29 (2021) 115890.

    25. [25]

      Z.Y. Meng, C.T. Feng, L. Zhang, et al., Org. Lett. 23 (2021) 4214–4218.

    26. [26]

      D. Yang, Q. Yan, E. Zhu, J. Lv, W.M. He, Chin. Chem. Lett. 33 (2022) 1798–1816.

    27. [27]

      J. Wen, C. Niu, K. Yan, et al., Green Chem. 22 (2020) 1129–1133.

    28. [28]

      F. Meng, H. Zhang, H. He, et al., Adv. Synth. Catal. 362 (2020) 248–254.

    29. [29]

      Y. Zhang, H. Gao, J. Guo, H. Zhang, X. Yao, Chem. Commun. 57 (2021) 13166–13169.

    30. [30]

      F.L. Zeng, H.L. Zhu, X.L. Chen, L.B. Qu, B. Yu, Green Chem. 23 (2021) 3677–3682.

    31. [31]

      Y. Li, Z. Huang, G. Mo, et al., Chin. J. Chem. 39 (2021) 942–946.

    32. [32]

      V.L.M. Silva, J. Elguero, A.M.S. Silva, Eur. J. Med. Chem. 156 (2018) 394–429.

    33. [33]

      M. Ramadan, A.A. Aly, L.E.A. El-Haleem, M.B. Alshammari, S. Bräse, Molecules 26 (2021) 4995.

    34. [34]

      R.F. Costa, L.C. Turones, K.V.N. Cavalcante, et al., Front. Pharmacol. 12 (2021) 666725.

    35. [35]

      S.F. Chen, X.C. Liu, J.K. Xu, et al., Inorg. Chem. 60 (2021) 2839–2845.

    36. [36]

      A. Sapkal, S. Kamble, ChemistrySelect 5 (2020) 12971–13026.

    37. [37]

      R. Yi, W. He, Chin. J. Org. Chem. 41 (2021) 1267–1268.

    38. [38]

      H. Zhuang, N. Lu, N. Ji, F. Han, C. Miao, Adv. Synth. Catal. 363 (2021) 5461–5472.

    39. [39]

      D. Ali, A.K. Panday, L.H. Choudhury, J. Org. Chem. 85 (2020) 13610–13620.

    40. [40]

      P. Dai, C. Li, Y. Li, et al., Asian J. Org. Chem. 9 (2020) 1585–1588.

    41. [41]

      X. Mao, J. Ni, B. Xu, C. Ding, Org. Chem. Front. 7 (2020) 350–354.

    42. [42]

      V.A. Kokorekin, V.M. Khodonov, S.V. Neverov, N. É. Grammatikova, V.A. Petrosyan, Russ. Chem. Bull. 70 (2021) 600–604.

    43. [43]

      J. Pan, C. Liu, J. Wang, et al., Tetrahedron Lett. 77 (2021) 153253.

    44. [44]

      V.A. Kokorekin, V.L. Sigacheva, V.A. Petrosyan, Tetrahedron Lett. 55 (2014) 4306–4309.

    45. [45]

      T. Cui, X. Zhang, J. Lin, et al., Synlett 32 (2021) 267–272.

    46. [46]

      Y. Kong, Y. Li, M. Huang, J.K. Kim, Y. Wu, Green Chem. 21 (2019) 4495–4498.

    47. [47]

      L. Zeng, J. Li, J. Gao, et al., Green Chem. 22 (2020) 3416–3420.

    48. [48]

      Q.W. Gui, F. Teng, S.N. Ying, et al., Chin. Chem. Lett. 31 (2020) 3241–3244.

    49. [49]

      Q. Huang, L. Zhu, D. Yi, X. Zhao, W. Wei, Chin. Chem. Lett. 31 (2020) 373–376.

    50. [50]

      M. Cao, Y.L. Fang, Y.C. Wang, et al., ACS Comb. Sci. 22 (2020) 268–273.

    51. [51]

      B.G. Cai, Q. Li, Q. Zhang, L. Li, J. Xuan, Org. Chem. Front. 8 (2021) 5982–5987.

    52. [52]

      Q.W. Gui, F. Teng, Z.C. Li, et al., Chin. Chem. Lett. 32 (2021) 1907–1910.

    53. [53]

      H. Wu, X. Yu, Z. Cao, Chin. J. Org. Chem. 41 (2021) 4712–4717.

    54. [54]

      N. Meng, Y. Lv, Q. Liu, et al., Chin. Chem. Lett. 32 (2021) 258–262.

    55. [55]

      Z. Wang, Q. Liu, R. Liu, et al., Chin. Chem. Lett. 33 (2022) 1479–1482.

    56. [56]

      M. Dyga, D. Hayrapetyan, R.K. Rit, L.J. Gooßen, Adv. Synth. Catal. 361 (2019) 3548–3553.

    57. [57]

      S. Redon, A.R. Obah Kosso, J. Broggi, P. Vanelle, Tetrahedron Lett. 58 (2017) 2771–2773.

    58. [58]

      L. Yang, Z.Y. Tian, C.P. Zhang, ChemistrySelect 4 (2019) 311–315.

    59. [59]

      A.V. Burasov, V.A. Petrosyan, Russ. Chem. Bull. 57 (2008) 1321–1322.

    60. [60]

      A. Gitkis, J.Y. Becker, Electrochim. Acta 55 (2010) 5854–5859.

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    3. [3]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    4. [4]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    5. [5]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    6. [6]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    7. [7]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    8. [8]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    16. [16]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    17. [17]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    18. [18]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    19. [19]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    20. [20]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

Metrics
  • PDF Downloads(0)
  • Abstract views(471)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return