Citation: Jinjian Hu, Yufen Zhao, Yanmei Li. Rationally designed amyloid inhibitors based on amyloid-related structural studies[J]. Chinese Chemical Letters, ;2023, 34(2): 107623. doi: 10.1016/j.cclet.2022.06.046 shu

Rationally designed amyloid inhibitors based on amyloid-related structural studies

    * Corresponding author at: Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
    E-mail address: liym@mail.tsinghua.edu.cn (Y. Li).
  • Received Date: 20 March 2022
    Revised Date: 15 June 2022
    Accepted Date: 19 June 2022
    Available Online: 24 June 2022

Figures(3)

  • Amyloid proteins correlate with a series of degenerative diseases. Targeting amyloid aggregation has remained a hot topic in therapeutic studies. Numerous inhibitors have been developed, but very few have been approved for marketing. Meanwhile, the growing knowledge of amyloid structural characteristics provides a basis for the rational design of inhibitors. Here we introduce the high-resolution structural findings of amyloid fibrils in recent years and discuss the reported strategies toward rationally designed inhibitors based on amyloid-related structural studies.
  • 加载中
    1. [1]

      F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 86 (2017) 27–68.

    2. [2]

      I. Benilova, E. Karran, B. De Strooper, Nat. Neurosci. 15 (2012) 349–357.

    3. [3]

      K. Tepper, J. Biernat, S. Kumar, et al., J. Biol. Chem. 289 (2014) 34389–34407.

    4. [4]

      H.A. Lashuel, C.R. Overk, A. Oueslati, et al., Nat. Rev. Neurosci. 14 (2013) 38–48.

    5. [5]

      G. Li, Y.M. Li, Prog. Chem. 32 (2020) 14–22.

    6. [6]

      K.W. Tipping, P. van Oosten-Hawle, E.W. Hewitt, et al., Trends Biochem. Sci. 40 (2015) 719–727.

    7. [7]

      M. Goedert, D.S. Eisenberg, R.A. Crowther, Annu. Rev. Neurosci. 40 (2017) 189–210.

    8. [8]

      M. Hasegawa, T. Nonaka, M. Masuda-Suzukake, Pharmacol. Ther. 172 (2017) 22–33.

    9. [9]

      X. Mao, M.T. Ou, S.S. Karuppagounder, et al., Science 353 (2016) aah3374.

    10. [10]

      M.R. Ma, Z.W. Hu, Y.F. Zhao, et al., Sci. Rep. 6 (2016) 37130.

    11. [11]

      Q.Q. Li, Y.Q. Liu, Y.Y. Luo, et al., Chem. Commun. 56 (2020) 5370–5373.

    12. [12]

      Y.S. Eisele, C. Monteiro, C. Fearns, et al., Nat. Rev. Drug Discov. 14 (2015) 759–780.

    13. [13]

      Q.Q. Li, T.T. Chu, Y.X. Chen, et al., Chin. J. Chem. 32 (2014) 964–968.

    14. [14]

      A. Paul, B.D. Zhang, S. Mohapatra, et al., Front. Mol. Biosci. 6 (2019) 16.

    15. [15]

      L. Urquhart, Nat. Rev. Drug Discov. 18 (2019) 575.

    16. [16]

      G. Li, W.Y. Yang, W.H. Li, et al., Chemistry 26 (2020) 3499–3503.

    17. [17]

      P. Maiti, G.L. Dunbar, Int. J. Mol. Sci. 19 (2018) 1637.

    18. [18]

      W.H. Ji, Z.B. Xiao, G.Y. Liu, et al., Chin. Chem. Lett. 28 (2017) 1829–1834.

    19. [19]

      V. Armiento, A. Spanopoulou, A. Kapurniotu, Angew. Chem. Int. Ed. 59 (2020) 3372–3384.

    20. [20]

      D.S. Eisenberg, M.R. Sawaya, Annu. Rev. Biochem. 86 (2017) 69–95.

    21. [21]

      D. Li, C. Liu, Biochemistry 59 (2020) 639–646.

    22. [22]

      R. Tycko, Annu. Rev. Phys. Chem. 62 (2011) 279–299.

    23. [23]

      X.C. Bai, G. McMullan, S.H. Scheres, Trends Biochem. Sci. 40 (2015) 49–57.

    24. [24]

      J.P. Renaud, A. Chari, C. Ciferri, et al., Nat. Rev. Drug Discov. 17 (2018) 471–492.

    25. [25]

      Y. Li, C. Zhao, F. Luo, et al., Cell Res. 28 (2018) 897–903.

    26. [26]

      T. Qiu, Q. Liu, Y.X. Chen, et al., J. Pept. Sci. 21 (2015) 522–529.

    27. [27]

      A.T. Petkova, R.D. Leapman, Z. Guo, et al., Science 307 (2005) 262–265.

    28. [28]

      A.T. Petkova, W.M. Yau, R. Tycko, Biochemistry 45 (2006) 498–512.

    29. [29]

      A.K. Paravastu, R.D. Leapman, W.M. Yau, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 18349–18354.

    30. [30]

      A.K. Schutz, T. Vagt, M. Huber, et al., Angew. Chem. Int. Ed. 54 (2015) 331–335.

    31. [31]

      M.A. Walti, F. Ravotti, H. Arai, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E4976–E4984.

    32. [32]

      L. Jin, W.H. Wu, Q.Y. Li, et al., Nanoscale 3 (2011) 4746–4751.

    33. [33]

      Y. Xiao, B. Ma, D. McElheny, et al., Nat. Struct. Mol. Biol. 22 (2015) 499–505.

    34. [34]

      M.T. Colvin, R. Silvers, Q.Z. Ni, et al., J. Am. Chem. Soc. 138 (2016) 9663–9674.

    35. [35]

      C. Sachse, C. Xu, K. Wieligmann, et al., J. Mol. Biol. 362 (2006) 347–354.

    36. [36]

      C. Sachse, M. Fandrich, N. Grigorieff, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 7462–7466.

    37. [37]

      M. Schmidt, C. Sachse, W. Richter, et al., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 19813–19818.

    38. [38]

      R. Zhang, X. Hu, H. Khant, et al., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 4653–4658.

    39. [39]

      M. Schmidt, A. Rohou, K. Lasker, et al., Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 11858–11863.

    40. [40]

      L. Gremer, D. Scholzel, C. Schenk, et al., Science 358 (2017) 116–119.

    41. [41]

      M. Kollmer, W. Close, L. Funk, et al., Nat. Commun. 10 (2019) 4760.

    42. [42]

      Y. Yang, D. Arseni, W. Zhang, et al., Science 375 (2022) 167–172.

    43. [43]

      M.R. Sawaya, S. Sambashivan, R. Nelson, et al., Nature 447 (2007) 453–457.

    44. [44]

      A. Savastano, G. Jaipuria, L. Andreas, et al., Sci. Rep. 10 (2020) 21210.

    45. [45]

      O.C. Andronesi, M. von Bergen, J. Biernat, et al., J. Am. Chem. Soc. 130 (2008) 5922–5928.

    46. [46]

      V. Daebel, S. Chinnathambi, J. Biernat, et al., J. Am. Chem. Soc. 134 (2012) 13982–13989.

    47. [47]

      A.W.P. Fitzpatrick, B. Falcon, S. He, et al., Nature 547 (2017) 185–190.

    48. [48]

      B. Falcon, W. Zhang, M. Schweighauser, et al., Acta Neuropathol. 136 (2018) 699–708.

    49. [49]

      B. Falcon, W. Zhang, A.G. Murzin, et al., Nature 561 (2018) 137–140.

    50. [50]

      B. Falcon, J. Zivanov, W. Zhang, et al., Nature 568 (2019) 420–423.

    51. [51]

      W. Zhang, A. Tarutani, K.L. Newell, et al., Nature 580 (2020) 283–287.

    52. [52]

      T. Arakhamia, C.E. Lee, Y. Carlomagno, et al., Cell 180 (2020) 633–644. e12.

    53. [53]

      W. Zhang, B. Falcon, A.G. Murzin, et al., eLife 8 (2019) e43584.

    54. [54]

      M.D. Tuttle, G. Comellas, A.J. Nieuwkoop, et al., Nat. Struct. Mol. Biol. 23 (2016) 409–415.

    55. [55]

      G. Lv, A. Kumar, K. Giller, et al., J. Mol. Biol. 420 (2012) 99–111.

    56. [56]

      J. Verasdonck, L. Bousset, J. Gath, et al., Biomol. NMR Assign. 10 (2016) 5–12.

    57. [57]

      R. Guerrero-Ferreira, N.M. Taylor, D. Mona, et al., eLife 7 (2018) e36402.

    58. [58]

      B. Li, P. Ge, K.A. Murray, et al., Nat. Commun. 9 (2018) 3609.

    59. [59]

      R. Guerrero-Ferreira, N.M. Taylor, A.A. Arteni, et al., eLife 8 (2019) e48907.

    60. [60]

      D.R. Boyer, B. Li, C. Sun, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 3592–3602.

    61. [61]

      K. Zhao, Y. Li, Z. Liu, et al., Nat. Commun. 11 (2020) 2643.

    62. [62]

      D.R. Boyer, B. Li, C. Sun, et al., Nat. Struct. Mol. Biol. 26 (2019) 1044–1052.

    63. [63]

      Y. Sun, S. Hou, K. Zhao, et al., Cell Res. 30 (2020) 360–362.

    64. [64]

      K. Zhao, Y.J. Lim, Z. Liu, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 20305–20315.

    65. [65]

      S. Zhang, Y.Q. Liu, C. Jia, et al., Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2011196118.

    66. [66]

      M. Schweighauser, Y. Shi, A. Tarutani, et al., Nature 585 (2020) 464–469.

    67. [67]

      Y.S. Fang, K.J. Tsai, Y.J. Chang, et al., Nat. Commun. 5 (2014) 4824.

    68. [68]

      E.B. Lee, V.M. Lee, J.Q. Trojanowski, Nat. Rev. Neurosci. 13 (2011) 38–50.

    69. [69]

      E.L. Guenther, Q. Cao, H. Trinh, et al., Nat. Struct. Mol. Biol. 25 (2018) 463–471.

    70. [70]

      Z. Chang, J. Deng, W. Zhao, et al., Biochem. Biophys. Res. Commun. 532 (2020) 655–661.

    71. [71]

      Q. Cao, D.R. Boyer, M.R. Sawaya, et al., Nat. Struct. Mol. Biol. 26 (2019) 619–627.

    72. [72]

      Q. Li, W.M. Babinchak, W.K. Surewicz, Nat. Commun. 12 (2021) 1620.

    73. [73]

      J. Shenoy, N. El Mammeri, A. Dutour, et al., FEBS J. 287 (2020) 2449–2467.

    74. [74]

      D. Arseni, M. Hasegawa, A.G. Murzin, et al., Nature 601 (2022) 139–143.

    75. [75]

      E.H. Pilkington, E.N. Gurzov, A. Kakinen, et al., Sci. Rep. 6 (2016) 21274.

    76. [76]

      P. Krotee, J.A. Rodriguez, M.R. Sawaya, et al., eLife 6 (2017) e19273.

    77. [77]

      C.A. Jurgens, M.N. Toukatly, C.L. Fligner, et al., Am. J. Pathol. 178 (2011) 2632–2640.

    78. [78]

      P. Liu, S. Zhang, M.S. Chen, et al., Chem. Commun. 48 (2012) 191–193.

    79. [79]

      S. Luca, W.M. Yau, R. Leapman, et al., Biochemistry 46 (2007) 13505–13522.

    80. [80]

      S. Bedrood, Y. Li, J.M. Isas, et al., J. Biol. Chem. 287 (2012) 5235–5241.

    81. [81]

      Q. Cao, D.R. Boyer, M.R. Sawaya, et al., Nat. Struct. Mol. Biol. 27 (2020) 653–659.

    82. [82]

      C. Roder, T. Kupreichyk, L. Gremer, et al., Nat. Struct. Mol. Biol. 27 (2020) 660–667.

    83. [83]

      M.E. Oskarsson, J.F. Paulsson, S.W. Schultz, et al., Am. J. Pathol. 185 (2015) 834–846.

    84. [84]

      C. Scheckel, A. Aguzzi, Nat. Rev. Genet. 19 (2018) 405–418.

    85. [85]

      R. Riek, S. Hornemann, G. Wider, et al., Nature 382 (1996) 180–182.

    86. [86]

      J.J. Helmus, K. Surewicz, P.S. Nadaud, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 6284–6289.

    87. [87]

      J.J. Helmus, K. Surewicz, W.K. Surewicz, et al., J. Am. Chem. Soc. 132 (2010) 2393–2403.

    88. [88]

      T. Theint, P.S. Nadaud, D. Aucoin, et al., Nat. Commun. 8 (2017) 753.

    89. [89]

      D. Aucoin, Y. Xia, T. Theint, et al., J. Struct. Biol. 206 (2019) 36–42.

    90. [90]

      C. Glynn, M.R. Sawaya, P. Ge, et al., Nat. Struct. Mol. Biol. 27 (2020) 417–423.

    91. [91]

      L.Q. Wang, K. Zhao, H.Y. Yuan, et al., Nat. Struct. Mol. Biol. 27 (2020) 598–602.

    92. [92]

      Q. Li, C.P. Jaroniec, W.K. Surewicz, bioRxiv (2021), 10.1101/2021.08.10.455830.

    93. [93]

      J.K. Choi, I. Cali, K. Surewicz, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 13851–13856.

    94. [94]

      S. Lovestam, F.A. Koh, B. van Knippenberg, et al., eLife 11 (2022) e76494.

    95. [95]

      T. Yokoyama, M. Mizuguchi, J. Med. Chem. 63 (2020) 14228–14242.

    96. [96]

      D.W. Baggett, A. Nath, Biochemistry 57 (2018) 6099–6107.

    97. [97]

      G. Toth, S.J. Gardai, W. Zago, et al., PLoS One 9 (2014) e87133.

    98. [98]

      M.M. Dedmon, K. Lindorff-Larsen, J. Christodoulou, et al., J. Am. Chem. Soc. 127 (2005) 476–477.

    99. [99]

      N.I. Brodie, K.I. Popov, E.V. Petrotchenko, et al., PLoS Comput. Biol. 15 (2019) e1006859.

    100. [100]

      K.I. Popov, K.A.T. Makepeace, E.V. Petrotchenko, et al., Structure 27 (2019) 1710–1715 e4.

    101. [101]

      S.A. Sievers, J. Karanicolas, H.W. Chang, et al., Nature 475 (2011) 96–100.

    102. [102]

      Q. Cheng, W. Qiang, J. Phys. Chem. B 121 (2017) 5544–5552.

    103. [103]

      P. Krotee, S.L. Griner, M.R. Sawaya, et al., J. Biol. Chem. 293 (2018) 2888–2902.

    104. [104]

      S.L. Griner, P. Seidler, J. Bowler, et al., eLife 8 (2019) e46924.

    105. [105]

      P.M. Seidler, D.R. Boyer, J.A. Rodriguez, et al., Nat. Chem. 10 (2018) 170–176.

    106. [106]

      P.M. Seidler, D.R. Boyer, K.A. Murray, et al., J. Biol. Chem. 294 (2019) 16451–16464.

    107. [107]

      S. Sangwan, S. Sahay, K.A. Murray, et al., eLife 9 (2020) e46775.

    108. [108]

      V.V. Shvadchak, K. Afitska, D.A. Yushchenko, Angew. Chem. Int. Ed. 57 (2018) 5690–5694.

    109. [109]

      Y.A. Kyriukha, K. Afitska, A.S. Kurochka, et al., J. Med. Chem. 62 (2019) 10342–10351.

    110. [110]

      K. Afitska, A. Priss, D.A. Yushchenko, et al., J. Mol. Biol. 432 (2020) 967–977.

    111. [111]

      A. Priss, K. Afitska, M. Galkin, et al., J. Med. Chem. 64 (2021) 6827–6837.

    112. [112]

      S. Vilar, G. Cozza, S. Moro, Curr. Top. Med. Chem. 8 (2008) 1555–1572.

    113. [113]

      K. Hochdorffer, J. Marz-Berberich, L. Nagel-Steger, et al., J. Am. Chem. Soc. 133 (2011) 4348–4358.

    114. [114]

      N.Q. Thai, N.H. Tseng, M.T. Vu, et al., J. Comput. Aided Mol. Des. 30 (2016) 639–650.

    115. [115]

      A. Espargaro, T. Ginex, M.D. Vadell, et al., J. Nat. Prod. 80 (2017) 278–289.

    116. [116]

      S. Hojati, A. Ghahghaei, M. Lagzian, J. Biomol. Struct. Dyn. 36 (2018) 2118–2130.

    117. [117]

      S. Vittorio, I. Adornato, R. Gitto, et al., J. Enzym. Inhib. Med. Chem. 35 (2020) 1727–1735.

    118. [118]

      P. Patel, K. Parmar, V.K. Vyas, et al., J. Mol. Graph. Model. 77 (2017) 295–310.

    119. [119]

      J.H. Zhao, H.L. Liu, P. Elumalai, et al., J. Mol. Model. 19 (2013) 151–162.

    120. [120]

      E.A. Mirecka, H. Shaykhalishahi, A. Gauhar, et al., Angew. Chem. Int. Ed. 53 (2014) 4227–4230.

    121. [121]

      E.D. Agerschou, P. Flagmeier, T. Saridaki, et al., eLife 8 (2019) e46112.

    122. [122]

      H. Shaykhalishahi, A. Gauhar, M.M. Wordehoff, et al., Angew. Chem. Int. Ed. 54 (2015) 8837–8840.

    123. [123]

      E.D. Agerschou, V. Borgmann, M.M. Wordehoff, et al., Chem. Sci. 11 (2020) 11331–11337.

    124. [124]

      A.A. Orr, H. Shaykhalishahi, E.A. Mirecka, et al., Comput. Chem. Eng. 116 (2018) 322–332.

    125. [125]

      A. Jha, M.G. Kumar, H.N. Gopi, et al., Langmuir 34 (2018) 1591–1600.

    126. [126]

      N. Ghosh, L.M. Kundu, Bioorg. Med. Chem. 33 (2021) 116017.

    127. [127]

      S.M. Ulamec, D.J. Brockwell, S.E. Radford, Front. Neurosci. 14 (2020) 611285.

    128. [128]

      S. Bieler, C. Soto, Curr. Drug Targets 5 (2004) 553–558.

    129. [129]

      A. Francioso, P. Punzi, A. Boffi, et al., Bioorg. Med. Chem. 23 (2015) 1671–1683.

    130. [130]

      P. Yang, C. Yang, K. Zhang, et al., Chin. Chem. Lett. 29 (2018) 1811–1814.

    131. [131]

      S. Kwon, M. Iba, C. Kim, et al., Neurotherapeutics 17 (2020) 935–954.

    132. [132]

      H. Zeng, Y. Qi, Z. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1857–1868.

  • 加载中
    1. [1]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    2. [2]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    3. [3]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    4. [4]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    5. [5]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    6. [6]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    7. [7]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    8. [8]

      Jingting WangYuanyuan ChenLinlin HanShasha XiaXingyao ZhangPeng XueYuejun KangJian MingZhigang Xu . Microenvironment responsive pod-structured astaxanthin nanocarrier for ameliorating inflammatory bowel disease. Chinese Chemical Letters, 2024, 35(7): 109029-. doi: 10.1016/j.cclet.2023.109029

    9. [9]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    10. [10]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    11. [11]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    12. [12]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    13. [13]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    14. [14]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    15. [15]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    16. [16]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    19. [19]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    20. [20]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

Metrics
  • PDF Downloads(0)
  • Abstract views(527)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return