Citation: Zhiwei Wang, Na Meng, Yufen Lv, Wei Wei, Huilan Yue, Guofu Zhong. Photocatalyst-free visible-light-mediated three-component reaction of α-diazoesters, cyclic ethers and NaSCN to access organic thiocyanates[J]. Chinese Chemical Letters, ;2023, 34(2): 107599. doi: 10.1016/j.cclet.2022.06.022 shu

Photocatalyst-free visible-light-mediated three-component reaction of α-diazoesters, cyclic ethers and NaSCN to access organic thiocyanates

    * Corresponding authors.
    E-mail addresses: weiweiqfnu@163.com (W. Wei), hlyue@nwipb.cas.cn (H. Yue), guofuzhong@eias.ac.cn (G. Zhong).
    1 These authors contributed equally to this work.
  • Received Date: 18 April 2022
    Revised Date: 2 June 2022
    Accepted Date: 8 June 2022
    Available Online: 13 June 2022

Figures(7)

  • A facile and environmentally friendly visible-light-induced three-component reaction of α-diazoesters, cyclic ethers and NaSCN to construct organic thiocyanates has been developed at room temperature. This reaction could occur under photocatalyst- and additive-free conditions to afford a number of organic thiocyanates with moderate to good yield and favorable functional group tolerance.
  • 加载中
    1. [1]

      S. Dutta, H. Abe, S. Aoyagi, C. Kibayashi, K.S. Gates, J. Am. Chem. Soc. 127 (2005) 15004–15005.

    2. [2]

      M. Burow, A. Bergner, J. Gershenzon, U. Wittstock, Plant Mol. Biol. 63 (2006) 49–61.

    3. [3]

      Y. Yasman, R.A. Edrada, V. Wray, P. Proksch, J. Nat. Prod. 66 (2003) 1512–1523.

    4. [4]

      J.R. Falck, S.H. Gao, R.N. Prasad, S.R. Koduru, Bioorg. Med. Chem. Lett. 18 (2008) 1768–1771.

    5. [5]

      E. Elhalem, B.N. Bailey, R. Docampoet, et al., J. Med. Chem. 45 (2002) 3984–3999.

    6. [6]

      Y.G. Kim, H.N. Lim, K.J. Lee, J. Heterocycl. Chem. 46 (2009) 23–27.

    7. [7]

      J.R. Falck, S. Gao, R.N. Prasad, S.R. Koduru, Bioorg. Med. Chem. Lett. 18 (2008) 1768–1771.

    8. [8]

      L. Melzig, C.B. Rauhut, N. Naredi-Rainer, P. Knochel, Chem. Eur. J. 17 (2011) 5362–5372.

    9. [9]

      B. Bayarmagnai, C. Matheis, K. Jouvin, L.J. Goossen, Angew. Chem. Int. Ed. 54 (2015) 5753–5756.

    10. [10]

      Y.T. Lee, S.Y. Choi, Y.K. Chung, Tetrahedron Lett. 48 (2007) 5673–5677.

    11. [11]

      W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895–1898.

    12. [12]

      Y. Guo, Y. Liu, J.P. Wan, Chin. Chem. Lett. 33 (2022) 855–858.

    13. [13]

      F.R. Bisogno, A. Cuetos, I. Lavandera, V. Gotor, Green Chem. 11 (2009) 452–454.

    14. [14]

      D.J. Bound, B.K. Bettadaiah, P. Srinivas, Synth. Commun. 43 (2013) 1138–1144.

    15. [15]

      A.R. Kiasat, Z. Nasrollah, S. Soheil, Chin. J. Chem. 30 (2012) 699–702.

    16. [16]

      C.C. Palsuledesai, S. Murru, S.K. Sahoo, B.K. Petel, Org. Lett. 11 (2009) 3382–3385.

    17. [17]

      A.R. Kiasat, R. Badri, S. Sayyahi, Chin. Chem. Lett. 19 (2008) 1301–1304.

    18. [18]

      M. Gorjizadeh, S. Sayyahi, Chin. Chem. Lett. 22 (2011) 659–662.

    19. [19]

      Y. Gao, Y. Liu, J.P. Wan, J. Org. Chem. 84 (2019) 2243–2251.

    20. [20]

      Z. Fu, Y. Gao, H. Yin, F.X. Chen, J. Org. Chem. 86 (2021) 17418–17427.

    21. [21]

      M. Dyga, D. Hayrapetyan, R.K. Rit, L.J. Gooßen, Adv. Synth. Catal. 361 (2019) 3548–3553.

    22. [22]

      A.R. Kiasat, R. Mirzajani, H. Shalbaf, T. Tabatabaei, Chin. Chem. Lett. 20 (2009) 1025–1029.

    23. [23]

      L.H. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237–1240.

    24. [24]

      A.H. Ye, Y. Zhang, Y.Y. Xie, et al., J. Org. Chem. 85 (2020) 2814–2822.

    25. [25]

      A.H. Ye, Y. Zhang, Y.Y. Xie, et al., Org. Lett. 21 (2019) 5106–5110.

    26. [26]

      J. Yadav, B. Reddy, U. Reddy, D. Chary, Synthesis 8 (2008) 1283–1287.

    27. [27]

      S. Liang, C.C. Zeng, H.Y. Tian, et al., Adv. Synth. Catal. 360 (2018) 1444–1452.

    28. [28]

      D. Wu, J. Qiu, P.G. Karmaker, H. Yin, F.X. Chen, J. Org. Chem. 83 (2018) 1576–1583.

    29. [29]

      Q.Q. Min, J.W. Yang, M.J. Pang, G.Z. Ao, F. Liu, Org. Chem. Front. 8 (2021) 249–253.

    30. [30]

      D. Wu, Y. Duan, K. Liang, H. Yin, F.X. Che, Chem. Commun. 57 (2021) 9938–9941.

    31. [31]

      J.R. Chen, X.Q. Hu, L.Q. Lu, W.J. Xiao, Chem. Soc. Rev. 45 (2016) 2044–2056.

    32. [32]

      Z.J. Shen, H.N. Shi, W.J. Hao, S.J. Tu, B. Jiang, Chem. Commun. 54 (2018) 11542–11545.

    33. [33]

      Y. Chen, L.Q. Lu, D.G. Yu, C.J. Zhu, W.J. Xiao, Sci. China Chem. 63 (2020) 1652–1658.

    34. [34]

      P. Bao, F. Liu, Y. Lv, et al., Org. Chem. Front. 7 (2020) 492–498.

    35. [35]

      S. He, X. Chen, F. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1863–1867.

    36. [36]

      Z. Gan, G. Li, X. Yang, et al., Sci. China Chem. 63 (2020) 1652–1658.

    37. [37]

      L.Y. Xie, T.G. Fang, J.X. Tan, et al., Green Chem. 21 (2019) 3858–3863.

    38. [38]

      D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40 (2019) 1494–1498.

    39. [39]

      S.Q. He, X.L. Chen, F.L. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1863–1867.

    40. [40]

      D. Yang, Q. Yan, E. Zhu, J. Lv, W.M. He, Chin. Chem. Lett. 33 (2022) 1798–1816.

    41. [41]

      Q.Q. Ge, J.S. Qian, J. Xuan, J. Org. Chem. 84 (2019) 8691–8701.

    42. [42]

      D. Chen, Y. Sun, D. Dong, Q. Han, Z. Wang, Chin. J. Org. Chem. 40 (2020) 4267–4273.

    43. [43]

      S. Peng, Y. Lin, W. He, Chin. J. Org. Chem. 40 (2020) 541–542.

    44. [44]

      Y. Ma, F. Gao, W. Xiao, et al., Chin. Chem. Lett. 33 (2022) 4395–4399.

    45. [45]

      Q.W. Gui, F. Teng, Z.C. Li, et al., Chin. Chem. Lett. 32 (2021) 1907–1910.

    46. [46]

      J. Jiang, F. Xiao, W.M. He, L. Wang, Chin. Chem. Lett. 32 (2021) 1637–1644.

    47. [47]

      Q. Yu, Y. Zhang, J.P. Wan, Green Chem. 21 (2019) 3436–3441.

    48. [48]

      Z. Yang, M.L. Stivanin, I.D. Jurberg, R.M. Koenigs, Chem. Soc. Rev. 49 (2020) 6833–6847.

    49. [49]

      B.G. Cai, J. Xuan, Chin. J. Org. Chem. 41 (2021) 4565–4574.

    50. [50]

      F. He, C. Pei, R.M. Koenigs, Chem. Commun. 56 (2020) 599–602.

    51. [51]

      R. Cheng, C. Qi, L. Wang, et al., Green Chem. 22 (2020) 4890–4895.

    52. [52]

      L. Qian, B.G. Cai, L. Li, J. Xuan, Org. Lett. 23 (2021) 6951–6955.

    53. [53]

      B.G. Cai, Q. Li, Q. Zhang, L. Li, J. Xuan, Org. Chem. Front. 8 (2021) 5982–5987.

    54. [54]

      Y.N. Wang, X. Wang, S.J. Li, Y. Lan, Org. Chem. Front. 9 (2022) 1247–1253.

    55. [55]

      M.L. Stivanin, R.D.C. Gallo, J.P.M. Spadeto, et al., Org. Chem. Front. 9 (2022) 1321–1326.

    56. [56]

      B.G. Cai, L. Li, G.Y. Xu, W.J. Xiao, J. Xuan, Photochem. Photobiol. Sci. 20 (2021) 823–829.

    57. [57]

      B. Zhao, L. Yang, K. Cheng, L. Zhou, J.P. Wan, Chin. J. Org. Chem. 41 (2021) 4732–4737.

    58. [58]

      R. Liu, Q. Liu, H. Meng, et al., Org. Chem. Front. 8 (2021) 1970–1975.

    59. [59]

      N. Meng, Y. Lv, Q. Liu, et al., Chin. Chem. Lett. 32 (2021) 258–262.

    60. [60]

      Z. Wang, Q. Liu, R. Liu, et al., Chin. Chem. Lett. 33 (2022) 1479–1482.

    61. [61]

      Q. Liu, L. Wang, H. Yue, et al., Green Chem. 21 (2019) 1609–1613.

    62. [62]

      Q. Liu, Y. Lv, R. Liu, et al., Chin. Chem. Lett. 32 (2021) 136–139.

    63. [63]

      Y. Lv, H. Cui, N. Meng, et al., Chin. Chem. Lett. 33 (2022) 979–114.

  • 加载中
    1. [1]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    2. [2]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    3. [3]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    4. [4]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    5. [5]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    6. [6]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    7. [7]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    8. [8]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    9. [9]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    12. [12]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    13. [13]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    14. [14]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    15. [15]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    16. [16]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    17. [17]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    18. [18]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    19. [19]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    20. [20]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

Metrics
  • PDF Downloads(0)
  • Abstract views(410)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return