V-substituted pyrochlore-type polyantimonic acid for highly enhanced lithium-ion storage
-
* Corresponding authors.
E-mail addresses: wukaipeng@scu.edu.cn (K. Wu), hao.wu@scu.edu.cn (H. Wu).
Citation: Haoyu Fang, Kai Yong, Boya Wang, Kaipeng Wu, Yun Zhang, Hao Wu. V-substituted pyrochlore-type polyantimonic acid for highly enhanced lithium-ion storage[J]. Chinese Chemical Letters, ;2023, 34(5): 107545. doi: 10.1016/j.cclet.2022.05.059
N. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Mater. Today 18 (2015) 252-264.
doi: 10.1016/j.mattod.2014.10.040
G. Harper, R. Sommerville, E. Kendrick, et al., Nature 575 (2019) 75-86.
doi: 10.1038/s41586-019-1682-5
M. Winter, B. Barnett, K. Xu, Chem. Rev. 118 (2018) 11433-11456.
doi: 10.1021/acs.chemrev.8b00422
M. Li, J. Lu, Z.W. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561.
doi: 10.1002/adma.201800561
Z.M. Liu, T. Song, U. Paik, J. Mater. Chem. A 6 (2018) 8159-8193.
doi: 10.1039/c8ta01782d
J. He, Y.Q. Wei, T.Y. Zhai, H.Q. Li, Mat. Chem. Front. 2 (2018) 437-455.
doi: 10.1039/c7qm00480j
L.Y. Kovalenko, V.A. Burmistrov, A.A. Biryukova, Russ. J. Electrochem. 52 (2016) 694-698.
doi: 10.1134/S1023193516070107
L.H. Baetsle, D. Huys, J. Inorg. Nucl. Chem. 30 (1968) 639-649.
doi: 10.1016/0022-1902(68)80489-0
T.N. Yu, H.B. Zhang, H.Z. Cao, G.Q. Zheng, Chem. Eng. J. 360 (2019) 313-324.
doi: 10.1016/j.cej.2018.11.209
F. Girardi, E. Sabbioni, J. Radioanal. Chem. 1 (1968) 169-178.
doi: 10.1007/BF02530237
Y.M. Tan, L.J. Chen, H. Chen, Q.L. Hou, X.H. Chen., Mater. Lett. 212 (2018) 103-106.
doi: 10.1016/j.matlet.2017.10.080
X.Z. Zhou, Z.F. Zhang, X.H. Xu, et al., ACS Appl. Mater. Interfaces 8 (2016) 35398-35406.
doi: 10.1021/acsami.6b13548
C.Z. Ke, F. Liu, Z.M. Zheng, et al., Rare Met. 40 (2021) 1347-1356.
doi: 10.1007/s12598-021-01716-1
X.Y. Feng, H.H. Wu, B. Gao, et al., Nano Res. 15 (2022) 352-360.
doi: 10.1007/s12274-021-3482-0
M. Cai, H. Zhang, Y. Zhang, et al., Sci. Bull. 67 (2022) 933-945.
doi: 10.1016/j.scib.2022.02.007
F. Ni, Y. Ma, J. Chen, W. Luo, J. Yang, Chin. Chem. Lett. 32 (2021) 2073-2078.
doi: 10.1016/j.cclet.2021.03.042
B.Y. Wang, Z.W. Deng, Y.T. Xia, et al., Adv. Energy Mater. 10 (2020) 1903119.
doi: 10.1002/aenm.201903119
B.Y. Wang, Y.H. Wei, H.Y. Fang, et al., Adv. Sci. 8 (2021) 2002866.
doi: 10.1002/advs.202002866
H.D. Zhou, C.R. Wiebe, J.A. Janik, et al., J. Solid State Chem. 183 (2010) 890-894.
doi: 10.1016/j.jssc.2010.01.025
K. Ozawa, M. Hase, H. Fujii, et al., Electrochim. Acta 50 (2005) 3205-3209.
doi: 10.1016/j.electacta.2004.11.051
Y.Q. Jia, J. Solid State Chem. 95 (1991) 184-187.
doi: 10.1016/0022-4596(91)90388-X
J. Morales, L. Sanchez, F. Martin, F. Berry, J. Solid State Chem. 179 (2006) 2554-2561.
doi: 10.1016/j.jssc.2006.05.003
Y.T. Hao, Y. Jiang, L.Z. Zhao, et al., ACS Appl. Mater. Interfaces 13 (2021) 21127-21137.
doi: 10.1021/acsami.0c21676
N.N. Wang, Z.C. Bai, Y.T. Qian, J. Yang, Adv. Mater. 28 (2016) 4126-4133.
doi: 10.1002/adma.201505918
X.M. Kang, G.D. Fu, X.W. Wang, et al., Chin. Chem. Lett. 32 (2021) 938-942.
doi: 10.1016/j.cclet.2020.06.013
W.A. England, M.G. Cross, A. Hamnett, P.J. Wiseman, J.B. Goodenough, Solid State Ion. 1 (1980) 231-249.
doi: 10.1016/0167-2738(80)90007-7
R.C. T. Slade, G.P. Hall, A. Ramanan, E. Prince, Solid State Ion. 92 (1996) 171-181.
doi: 10.1016/S0167-2738(96)00497-3
Z.J. Zhang, H.L. Zhao, Y.Q. Teng, et al., Adv. Energy Mater. 8 (2018) 1700174.
doi: 10.1002/aenm.201700174
Y.T. Yan, X.L. Zhao, H.L. Dou, et al., Chin. Chem. Lett. 32 (2021) 910-913.
doi: 10.1016/j.cclet.2020.07.021
C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Adv. Funct. Mater. 32 (2022) 2107249.
doi: 10.1002/adfm.202107249
Q.K. Zhang, X.Q. Zhang, H. Yuan, J.Q. Huang, Small Sci. 1 (2021) 2100058.
doi: 10.1002/smsc.202100058
C. Chen, Q. Liang, Z. Chen, et al., Angew. Chem. Int. Ed. 133 (2021) 26922-26928.
doi: 10.1002/ange.202110441
D. Larcher, A.S. Prakash, L. Laffont, et al., J. Electrochem. Soc. 153 (2006) A1778-A1787.
doi: 10.1149/1.2219711
C.R. Hao, T.G. Gao, A.B. Yuan, J.Q. Xu, Chin. Chem. Lett. 32 (2021) 113-118.
doi: 10.1016/j.cclet.2020.11.038
G. Zhu, R. Guo, W. Luo, et al., Natl. Sci. Rev. 8 (2021) nwaa152.
doi: 10.1093/nsr/nwaa152
F.Z. Zhang, Y.Y. Ma, M.M. Jiang, W. Luo, J.P. Yang, Rare Met. 41 (2022) 1276-1283.
doi: 10.1007/s12598-021-01741-0
P. Jing, Q. Wang, B.Y. Wang, et al., Ceram. Int. 45 (2019) 216-224.
doi: 10.1016/j.ceramint.2018.09.154
C.P. Wang, J.T. Yan, T.Y. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 25013-25019.
doi: 10.1002/anie.202110177
Y. Liu, H.C. Wang, K.K. Yang, et al., Appl. Sci. 9 (2019) 2677.
doi: 10.3390/app9132677
O.A. Jaramillo-Quintero, M. Benitez-Cruz, J.L. Garcia-Ocampo, A. Cano, M.E. Rincon, J. Alloy. Compd. 807 (2019) 151647.
doi: 10.1016/j.jallcom.2019.151647
M.X. Deng, S.J. Li, W.W. Hong, et al., Mater. Chem. Phys. 223 (2019) 46-52.
doi: 10.1016/j.matchemphys.2018.10.043
Q.G. Han, Y.B. Sun, W.Q. Zhang, et al., Ionics 26 (2020) 1221-1228.
doi: 10.1007/s11581-019-03300-1
Y. Li, Z.J. Song, T.T. Sun, et al., Int. J. Hydrog. Energy 46 (2021) 26308-26317.
doi: 10.1016/j.ijhydene.2021.05.110
C. Xian, W. Liang, M. Feng, et al., Nanoscale Adv. (UK)2 (2020) 5578-5583.
doi: 10.1039/D0NA00711K
J.L. Liu, J. Wang, C.H. Xu, et al., Adv. Sci. 5 (2018) 1700322.
doi: 10.1002/advs.201700322
N.T. Wu, J.K. Shen, L. Sun, et al., Electrochim. Acta 310 (2019) 70-77.
doi: 10.1016/j.electacta.2019.04.115
N.T. Wu, W.D. Tian, J.K. Shen, et al., Inorg. Chem. Front. 6 (2019) 192-198.
doi: 10.1039/c8qi01165f
S.B. Tang, M.O. Lai, L. Lu, Mater. Chem. Phys. 111 (2008) 149-153.
doi: 10.1016/j.matchemphys.2008.03.041
Q. Liu, X. Su, D. Lei, et al., Nat. Energy 3 (2018) 936-943.
doi: 10.1038/s41560-018-0180-6
J. Xie, N. Imanishi, T. Matsumura, et al., Solid State Ion. 179 (2008) 362-370.
doi: 10.1016/j.ssi.2008.02.051
B.Y. Wang, Y. Wang, H. Wu, et al., ChemElectroChem 4 (2017) 1141-1147.
doi: 10.1002/celc.201600854
K. Tang, X.Q. Yu, J.P. Sun, H. Li, X.J. Huang, Electrochim. Acta 56 (2011) 4869-4875.
doi: 10.1016/j.electacta.2011.02.119
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Wendi Dou , Guangying Wan , Tiefeng Liu , Lin Han , Wu Zhang , Chuang Sun , Rensheng Song , Jianhui Zheng , Yujing Liu , Xinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916