Citation: Yue Zhang, Wei Zhou, Ning Xu, Guangying Wang, Jin Li, Kai An, Wenchao Jiang, Xuelian Zhou, Qinglong Qiao, Xindong Jiang, Zhaochao Xu. Aniline as a TICT rotor to derive methine fluorogens for biomolecules: A curcuminoid-BF2 compound for lighting up HSA/BSA[J]. Chinese Chemical Letters, ;2023, 34(2): 107472. doi: 10.1016/j.cclet.2022.04.070 shu

Aniline as a TICT rotor to derive methine fluorogens for biomolecules: A curcuminoid-BF2 compound for lighting up HSA/BSA

Figures(4)

  • The unique structure of fluorescent proteins in which the fluorophore is encapsulated by the protein shell to restrict rotation and emit light inspired the screening of chromophores that selectively bind to biomolecules to generate fluorescence. In this paper, we report a curcuminoid-BF2-like fluorescent dye N-BF2 containing 4-dimethylaniline as an electron-donating group. When this dye is combined with HSA or BSA, the fluorescence is enhanced 90/112-fold, and the fluorescence quantum yield increases from < 0.001 to 0.16/0.19. Such a large change in fluorescence enhancement is due to the encapsulation of N-BF2 in the protein cavity by HSA/BSA, which inhibits the intramolecular rotation of the aniline moiety caused by charge transfer after the fluorophore is excited by light. N-BF2 has fast and strong binding to HSA or BSA and was found to be reversible in solution and intracellularly. Since N-BF2 also has the ability to target lipid droplets, the complex of N-BF2/HSA realizes the regulation of reversible lipid droplet staining in cells.
  • 加载中
    1. [1]

      H. Singh, K. Tiwari, R. Tiwari, et al., Chem. Rev. 119(2019) 11718–11760.  doi: 10.1021/acs.chemrev.9b00379

    2. [2]

      Z. Xu, J. Yoon, D.R. Spring, Chem. Soc. Rev. 39(2010) 1996–2006.  doi: 10.1039/b916287a

    3. [3]

      W. Zhou, X. Fang, Q. Qiao, et al., Chin. Chem. Lett. 32(2021) 943–946.

    4. [4]

      J. Chen, W. Liu, X. Fang, et al., Chin. Chem. Lett. 33(2022) 5042–5046.  doi: 10.1016/j.cclet.2022.03.120

    5. [5]

      J. Chen, C. Wang, W. Liu, et al., Angew. Chem. Int. Ed. 60(2021) 25104–25113.  doi: 10.1002/anie.202111052

    6. [6]

      R.Y. Tsien, Angew. Chem. Int. Ed. 48(2009) 5612–5626.  doi: 10.1002/anie.200901916

    7. [7]

      D.P. Barondeau, C.D. Putnam, C.J. Kassmann, et al., Proc. Natl. Acad. Sci. U. S. A. 100(2003) 12111–12116.  doi: 10.1073/pnas.2133463100

    8. [8]

      C. Szent-Gyorgyi, B.F. Schmidt, Y. Creeger, et al., Nat. Biotechnol. 26(2008) 235–240.  doi: 10.1038/nbt1368

    9. [9]

      E. Gallo, Bioconjug. Chem. 31(2020) 16–27.  doi: 10.1021/acs.bioconjchem.9b00710

    10. [10]

      L. Jullien, A. Gautier, Methods Appl. Fluoresc. 3(2015) 042007.  doi: 10.1088/2050-6120/3/4/042007

    11. [11]

      S. Xu, H.Y. Hu, Acta Pharmacol. Sin. 8(2018) 339–348.  doi: 10.1016/j.apsb.2018.02.001

    12. [12]

      W. Liu, Q. Qiao, J. Zheng, et al., Biosens. Bioelectron. 176(2021) 112886.  doi: 10.1016/j.bios.2020.112886

    13. [13]

      C.G. England, H. Luo, W. Cai, Bioconjug. Chem. 26(2015) 975–986.  doi: 10.1021/acs.bioconjchem.5b00191

    14. [14]

      W. Liu, R. Li, F. Deng, et al., ACS Appl. Bio Mater. 4(2021) 2104–2112.  doi: 10.1021/acsabm.0c01269

    15. [15]

      W. Chi, Q. Qiao, C. Wang, et al., Angew. Chem. Int. Ed. 59(2020) 20215–20223.  doi: 10.1002/anie.202010169

    16. [16]

      F. Deng, Q. Qiao, J. Li, et al., J. Phys. Chem. B 124(2020) 7467–7474.  doi: 10.1021/acs.jpcb.0c05642

    17. [17]

      F. Deng, L. Liu, W. Huang, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 240(2020) 118466–118474.  doi: 10.1016/j.saa.2020.118466

    18. [18]

      Q. Qiao, W. Liu, J. Chen, et al., Angew. Chem. Int. Ed. 61(2022) e202202961.

    19. [19]

      C. Wang, W. Chi, Q. Qiao, et al., Chem. Soc. Rev. 50(2021) 12656–12678.  doi: 10.1039/D1CS00239B

    20. [20]

      W. Liu, J. Chen, Q. Qiao, et al., Chin. Chem. Lett. 33(2022) 4943–4947.  doi: 10.1016/j.cclet.2022.03.121

    21. [21]

      X. Li, J. Zheng, W. Liu, et al., Chin. Chem. Lett. 31(2020) 2937–2940.  doi: 10.1016/j.cclet.2020.05.043

    22. [22]

      K. Ferreira, H.Y. Hu, V. Fetz, et al., Angew. Chem. Int. Ed. 56(2017) 8272–8276.  doi: 10.1002/anie.201701358

    23. [23]

      X. Tan, T.P. Constantin, K.L. Sloane, et al., J. Am. Chem. Soc. 139(2017) 9001–9009.  doi: 10.1021/jacs.7b04211

  • 加载中
    1. [1]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    2. [2]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    3. [3]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

Metrics
  • PDF Downloads(8)
  • Abstract views(423)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return