Citation: Qinglong Yan, Yu Miao, Xiaomei Wang, Jifei Ma, Juan Diwu, Ying Zhu, Shuao Wang, Chunhai Fan. ssDNA functionalized nanodiamonds for uranium decorporation[J]. Chinese Chemical Letters, ;2022, 33(7): 3570-3572. doi: 10.1016/j.cclet.2022.03.052 shu

ssDNA functionalized nanodiamonds for uranium decorporation

    * Corresponding authors.
    E-mail addresses: diwujuan@suda.edu.cn (J. Diwu), zhuying@zjlab.org.cn (Y. Zhu).
    1 These three authors contributed equally to this work.
  • Received Date: 9 February 2022
    Revised Date: 11 March 2022
    Accepted Date: 14 March 2022
    Available Online: 16 March 2022

Figures(3)

  • The hunt for agents that are suitable for actinide decorporation to reduce the whole-body load of actinide in accidental internal exposure is the ever-lasting goal in radiation protection and medical treatment in nuclear emergency. All current decorporation agents can be categorized as two groups, one is the molecular ligands, and the other is the nanoparticles decorated with molecular ligands. Here in this work, functional nanodiamonds (fNDs) with ssDNA (the endogenous biomacromolecule rich in phosphate groups) loaded on the NDs is reported, which poses good uranyl adsorption selectivity, high cellular uptake, fast excretion, and effective decorporation of uranyl from rat renal proximal tubular epithelial cells (NRK-52E). All those results corroborate that fNDs can potentially serve as a brand new family of chelators for actinide decorporation.
  • 加载中
    1. [1]

      S.K. Annamalai, K.D. Arunachalam, Aquat. Toxicol.186 (2017) 145–158.  doi: 10.1016/j.aquatox.2017.03.002

    2. [2]

      A. Periyakaruppan, F. Kumar, S. Sarkar, C.S. Sharma, G.T. Ramesh, Arch. Toxicol. 81 (2007) 389–395.  doi: 10.1007/s00204-006-0167-0

    3. [3]

      J.G. Hamilton, Rev. Mod. Phys. 20 (1948) 718–728.  doi: 10.1103/RevModPhys.20.718

    4. [4]

      R.C. Blantz, J.C. Pelayo, L.C. Gushwa, R.R. Myers, A.P. Evan, Kidney Int. 28 (1985) 733–743.  doi: 10.1038/ki.1985.192

    5. [5]

      M.L. Zamora, B.L. Tracy, J.M. Zielinski, D.P. Meyerhof, M.A. Moss, Toxicol. Sci. 43 (1998) 68–77.  doi: 10.1093/toxsci/43.1.68

    6. [6]

      É. Ansoborlo, B. Amekraz, C. Moulin, et al., C. R. Chim. 10 (2007) 1010–1019.  doi: 10.1016/j.crci.2007.01.015

    7. [7]

      A.E.V. Gorden, J. Xu, K.N. Raymond, P. Durbin, Chem. Rev. 103 (2003) 4207–4282.

    8. [8]

      R.J. Abergel, P.W. Durbin, B. Kullgren, et al., Health Phys. 99 (2010) 401–407.  doi: 10.1097/HP.0b013e3181c21273

    9. [9]

      X. Wang, X. Dai, C. Shi, et al., Nat. Commun. 10 (2019) 2570.  doi: 10.1109/cac48633.2019.8996820

    10. [10]

      E. Fattal, N. Tsapis, G. Phan, Adv. Drug. Deliv. Rev. 90 (2015) 40–54.  doi: 10.1016/j.addr.2015.06.009

    11. [11]

      V. Chaleix, M. Lecouvey, Tetrahedron Lett. 48 (2007) 703–706.  doi: 10.1016/j.tetlet.2006.11.094

    12. [12]

      M. Sawicki, D. Lecercle, G. Grillon, et al., Eur. J. Med. Chem. 43 (2008) 2768–2777.  doi: 10.1016/j.ejmech.2008.01.018

    13. [13]

      P.W. Durbin, N. Jeung, S.J. Rodgers, et al., Radiat. Prot. Dosim. 26 (1989) 351–358.  doi: 10.1093/oxfordjournals.rpd.a080429

    14. [14]

      G. Phan, A. Herbet, S. Cholet, et al., J. Controlled Release110 (2005) 177–188.  doi: 10.1016/j.jconrel.2005.09.029

    15. [15]

      C. Shi, X. Wang, J. Wan, et al., Bioconjugate Chem. 29 (2018) 3896–3905.  doi: 10.1021/acs.bioconjchem.8b00711

    16. [16]

      L. Wang, Z.M. Yang, J.H. Gao, et al., J. Am. Chem. Soc. 128 (2006) 13358–13359.  doi: 10.1021/ja0651355

    17. [17]

      M. Sawicki, J.M. Siaugue, C. Jacopin, et al., Chemistry (Easton) 11 (2005) 3689–3697.  doi: 10.1002/chem.200401056

    18. [18]

      X. He, X. Zhou, Y. Liu, X. Wang, Sens. Actuators B311 (2020) 127676.  doi: 10.1016/j.snb.2020.127676

    19. [19]

      J.H. Lee, Z. Wang, J. Liu, Y. Lu, J. Am. Chem. Soc. 125 (2008) 14217–14226.  doi: 10.1021/ja803607z

    20. [20]

      Y. Yuan, T. Liu, J. Xiao, et al., Nat. Commun. 11 (2020) 5708.

    21. [21]

      A. Rossberg, T. Abe, K. Okuwaki, et al., Chem. Commun. 55 (2019) 2015–2018.  doi: 10.1039/c8cc09329f

    22. [22]

      D.G. Lim, R.E. Prim, K.H. Kim, et al., Int. J. Pharm. 514 (2016) 41–51.  doi: 10.1016/j.ijpharm.2016.06.004

    23. [23]

      Y. Zhu, J. Li, W. Li, et al., Theranostics2 (2012) 302–312.  doi: 10.7150/thno.3627

    24. [24]

      J. Li, Y. Zhu, W. Li, et al., Biomaterials31 (2010) 8410–8418.

    25. [25]

      Y. Zhu, Y. Zhang, G. Shi, et al., Part. Fibre Toxicol. 12 (2015) 2.

    26. [26]

      Y. Zhang, Z. Cui, H. Kong, et al., Adv. Mater. 28 (2016) 2699–2708.  doi: 10.1002/adma.201506232

  • 加载中

Metrics
  • PDF Downloads(4)
  • Abstract views(402)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return