Boron: A key functional component for designing high-performance heterogeneous catalysts
-
* Corresponding authors.
E-mail addresses: hexingquan@hotmail.com (X. He), xxzou@jlu.edu.cn (X. Zou).
Citation: Meihong Fan, Xiao Liang, Qiuju Li, Lili Cui, Xingquan He, Xiaoxin Zou. Boron: A key functional component for designing high-performance heterogeneous catalysts[J]. Chinese Chemical Letters, ;2023, 34(1): 107275. doi: 10.1016/j.cclet.2022.02.080
M. V. Pahl, B. D. Culver, N. D. Vaziri, J. Renal Nutr. 15 (2005) 362-370.
doi: 10.1053/j.jrn.2005.05.001
A. Huang, X. Chen, C. Wang, Z. Wang, Mater. Res. Express 6 (2018) 025036.
doi: 10.1088/2053-1591/aaef05
H. J. Zhai, B. Kiran, J. Li, L. S. Wang, Nat. Mater. 2 (2003) 827-833.
doi: 10.1038/nmat1012
B. Albert, H. Hillebrecht, Angew. Chem. Int. Ed. 48 (2009) 8640-8668.
doi: 10.1002/anie.200903246
A. R. Oganov, J. Chen, C. Gatti, et al., Nature 457 (2009) 863-867.
doi: 10.1038/nature07736
A. Banks, J. Chem. Educ. 67 (1990) 14.
doi: 10.1021/ed067p14
C. G. Woodbridge, Sci. Mon. 70 (1950) 97-104.
J. A. Moore, Expert Scientific Committee, Reprod. Toxicol. 11 (1997) 123-160.
doi: 10.1016/S0890-6238(96)00204-3
D. M. Schubert. Struct. Bond. 105 (2003) 1-40.
doi: 10.1007/3-540-46110-8_1
C. A. Rosolem, A. Costa, J. Plant Nutr. 23 (2000) 815-825.
doi: 10.1080/01904160009382062
P. Argust, Biol. Trace Elem. Res. 66 (1998) 131-143.
doi: 10.1007/BF02783133
J. L. Parks, M. Edwards, Crit. Rev. Environ. Sci. Technol. 35 (2005) 81-114.
doi: 10.1080/10643380590900200
C. C. Vidyasagar, B. M. Muñoz Flores, V. M. Jiménez-Pérez, P. M. Gurubasavaraj, Mater. Today Chem. 11 (2019) 133-155.
doi: 10.1016/j.mtchem.2018.09.010
H. J. Zhai, B. Kiran, J. Li, L. S. Wang, Nat. Mater 2 (2003) 827-833.
doi: 10.1038/nmat1012
H. Braunschweig, R. D. Dewhurst, K. Kraft, K. Radacki, Angew. Chem. Int. Ed. 48 (2009) 5837-5840.
doi: 10.1002/anie.200901211
M. A. Légaré, G. Bélanger-Chabot, R.D. Dewhurst, et al., Science 359 (2018) 896-900.
doi: 10.1126/science.aaq1684
T. Ogitsu, E. Schwegler, G. Galli, Chem. Rev. 113 (2013) 3425-3449.
doi: 10.1021/cr300356t
H. Braunschweig, R. D. Dewhurst, Dalton Trans. 40 (2011) 549-558.
doi: 10.1039/C0DT01181A
G. Frenking, N. Fröhlich, Chem. Rev. 100 (2000) 717-774.
doi: 10.1021/cr980401l
Y. Wang, L. Wu, Y. Lin, et al., Phys. Rev. B 92 (2015) 174106.
doi: 10.1103/PhysRevB.92.174106
P. Li, R. Zhou, X. C. Zeng, ACS Appl. Mater. Interfaces 7 (2015) 15607-15617.
doi: 10.1021/acsami.5b04332
J. Akimitsu, T. Muranaka, Phys. C 388-389 (2003) 98-102.
doi: 10.1016/S0921-4534(02)02669-2
A. T. Lech, C. L. Turner, J. Lei, et al., J. Am. Chem. Soc. 138 (2016) 14398-14408.
doi: 10.1021/jacs.6b08616
T. Muranaka, J. Akimitsu, Phys. C 226 (2011) 385-394.
J. B. Levine, J. B. Betts, J. D. Garrett, S. Q. Guo, J. T. Eng, et al., Acta Mater. 58 (2010) 1530-1535.
doi: 10.1016/j.actamat.2009.10.060
P. A. Chen, C. Y. Yang, S. J. Chang, M. H. Lee, N. K. Tang, J. Magn. Magn. Mater. 370 (2014) 45-53.
doi: 10.1016/j.jmmm.2014.06.027
B. Ganem, J. O. Osby, Chem. Rev. 86 (1986) 763-780.
doi: 10.1021/cr00075a003
R. N. Grimes, Science 194 (1976) 709-710.
doi: 10.1126/science.194.4266.709
H. C. Brown, Science 210 (1980) 485-492.
doi: 10.1126/science.210.4469.485
A. Suzuki, Angew. Chem. Int. Ed. 50 (2011) 6722-6737.
doi: 10.1002/anie.201101379
R. Paul, P. Buisson, N. Joseph, Ind. Eng. Chem. Res. 44 (1952) 1006-1010.
doi: 10.1021/ie50509a029
X. Fan, X. Xiao, L. Chen, et al., J. Mater. Chem. A 1 (2013) 11368-11375.
doi: 10.1039/c3ta12401k
S. Carenco, D. Portehault, C. Boissière, N. Mézailles, C. Sanchez, Chem. Rev. 113 (2013) 7981-8065.
doi: 10.1021/cr400020d
T.S.R.C. Murthy, J.K. Sonber, K. Sairam, R.D. Bedse, J.K. Chakarvartty, Mater. Today Proc. 3 (2016) 3104–3113.
doi: 10.1016/j.matpr.2016.09.026
E. Bykova, A. A. Tsirlin, H. Gou, L. Dubrovinsky, N. Dubrovinskaia, J. Alloy. Compd. 608 (2014) 69-72.
doi: 10.1016/j.jallcom.2014.04.104
J. M. Venegas, W. P. McDermott, I. Hermans, Acc. Chem. Res. 51 (2018) 2556-2564.
doi: 10.1021/acs.accounts.8b00330
Y. Chen, G. Yu, W. Chen, et al., J. Am. Chem. Soc. 139 (2017) 12370-12373.
doi: 10.1021/jacs.7b06337
M. Wang, X. Qin, K. Jiang, et al., J. Phys. Chem. C 121 (2017) 3416-3423.
doi: 10.1021/acs.jpcc.6b12026
N. Wang, A. Xu, P. Ou, et al., Nat. Commun. 12 (2021) 6089.
doi: 10.1038/s41467-021-26307-7
R. Guo, K. Zhang, S. Ji, Y. Zheng, M. Jin, Chin. Chem. Lett. 32 (2021) 2679-2692.
doi: 10.1016/j.cclet.2021.03.041
J. T. Kim, S. H. Hong, X. Bian, et al., Intermetallics 99 (2018) 1-7.
doi: 10.1016/j.intermet.2018.05.006
H. Sun, J. Meng, L. Jiao, F. Cheng, J. Chen, Inorg. Chem. Front. 5 (2018) 760-772.
doi: 10.1039/c8qi00044a
G. Gouget, P. Beaunier, D. Portehault, C. Sanchez, Faraday Discuss. 191 (2016) 511-525.
doi: 10.1039/C6FD00053C
B. Wang, D. Y. Wang, Z. Cheng, X. Wang, Y. X. Wang, ChemPhysChem 14 (2013) 1245-1255.
doi: 10.1002/cphc.201201009
S. C. Chien, S. Chattopadhyay, L. C. Chen, S. T. Lin, K. H. Chen, Diam. Relat. Mater. 12 (2003) 1463-1471.
doi: 10.1016/S0925-9635(03)00175-4
T. Ma, P. Zhu, X. Yu, Chin. Phys. B 30 (2021) 108103.
doi: 10.1088/1674-1056/ac1925
Q. Li, X. Zou, X. Ai, et al., Adv. Energy Mater. 9 (2019) 1803369.
X. Ai, X. Zou, H. Chen, et al., Angew. Chem. Int. Ed. 59 (2020) 3961-3965.
doi: 10.1002/anie.201915663
Z. Li, Z. Xie, H. Chen, et al., Chem. Eng. J. 419 (2021) 129568.
doi: 10.1016/j.cej.2021.129568
Z. Li, X. Ai, H. Chen, et al., Chem. Commun. 57 (2021) 5075-5078.
doi: 10.1039/d1cc00774b
K. Deng, T. Ren, Y. Xu, et al., J. Mater. Chem. A 8 (2020) 5595-5600.
doi: 10.1039/d0ta00398k
F. Guo, Y. Wu, X. Ai, et al., Chem. Commun. 55 (2019) 8627-8630.
doi: 10.1039/c9cc03638e
Q. Xia, Y. Hu, Y. Wang, et al., Nanoscale, 2022, 14, 1264-1270.
doi: 10.1039/d1nr07079g
A. J. Mannix, Z. Zhang, N. P. Guisinger, B.I. Yakobson, M.C. Hersam, Nat. Nanotechnol. 13 (2018) 444-450.
doi: 10.1038/s41565-018-0157-4
X. Liu, Y. Jiao, Y. Zheng, S. Z. Qiao, ACS Catal. 10 (2020) 1847-1854.
doi: 10.1021/acscatal.9b04103
F. Guo, Y. Wu, H. Chen, et al., Energy Environ. Sci. 12 (2019) 684-692.
doi: 10.1039/c8ee03405b
T. T. V. Doan, J. Wang, K. C. Poon, et al., Angew. Chem. Int. Ed. 55 (2016) 6842-6847.
doi: 10.1002/anie.201601727
D. H. Quiñones, A. Rey, P. M. Álvarez, F. J. Beltrán, G. L. Puma, Appl. Catal. B 178 (2015) 74-81.
doi: 10.1016/j.apcatb.2014.10.036
E. B. Simsek, Appl. Catal. B 200 (2017) 309-322.
doi: 10.1016/j.apcatb.2016.07.016
H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Chem. Rev. 121 (2021) 13174-13212.
doi: 10.1021/acs.chemrev.1c00234
D. He, L. Zhang, D. He, et al., Nat. Commun. 7 (2016) 12362.
doi: 10.1038/ncomms12362
S. Jin, ACS Energy Lett. 2 (2017) 1937-1938.
doi: 10.1021/acsenergylett.7b00679
A.L. James, M. Lenka, N. Pandey, et al., Nanoscale 12 (2020) 17121–17131.
doi: 10.1039/d0nr03677c
T. Chen, C. Foo, S.C. E. Tsang, Chem. Sci. 12 (2021) 517-532.
doi: 10.1039/d0sc06496c
F. Müller, M. Lessel, S. Grandthyll, et al., Langmuir 29 (2013) 4543-4550.
doi: 10.1021/la400148h
S.K. Nayak, C.J. Hung, V. Sharma, et al., npj Comput. Mater. 4 (2018) 11.
doi: 10.1038/s41524-018-0068-9
R. Janisch, C. Elsässer, Phys. Rev. B 67 (2003) 224101.
doi: 10.1103/PhysRevB.67.224101
J. Feng, R.G. Hennig, N.W. Ashcroft, R. Hoffmann, Nature 451 (2008) 445-448.
doi: 10.1038/nature06442
F. Shao, Z. Yao, Y. Gao, et al., Chin. J. Catal. 42 (2021) 1185-1194.
doi: 10.1016/S1872-2067(20)63747-0
Y. Niu, X. Huang, Y. Wang, et al., Nat. Commun. 11 (2020) 3324.
doi: 10.1038/s41467-020-17188-3
C. Deng, J. Qian, C. Yu, et al., RSC Adv. 6 (2016) 113630-113647.
doi: 10.1039/C6CC08404D
L. Zhang, J. Lu, S. Yin, et al., Appl. Catal. B Environ. 230 (2018) 58-64.
doi: 10.1117/12.2500760
L. Li, Z. Deng, L. Yu, Z. Lin, W. Wang, G. Yang, Nano Energy 27 (2016) 103-113.
doi: 10.1016/j.nanoen.2016.06.054
C. Lu, P. R. Jothi, T. Thersleff, et al., Nanoscale 12 (2020) 3121-3128.
doi: 10.1039/c9nr09818f
R. Li, Z. Liu, Q.T. Trinh, et al., Adv. Mater. 33 (2021) 2101536.
doi: 10.1002/adma.202101536
Y. Lin, J.W. Connell, Nanoscale 4 (2012) 6908-6939.
doi: 10.1039/c2nr32201c
M. D. Esrafili, S. Asadollahi, ChemistrySelect 3 (2018) 9181-9188.
doi: 10.1002/slct.201801848
P. Joshi, R. Yadav, M. Hara, et al., J. Mater. Chem. A 9 (2021) 9066-9080.
doi: 10.1039/d1ta00158b
S. Büchele, Z. Chen, E. Fako, et al., Angew. Chem. Int. Ed. 59 (2020) 19639-19644.
doi: 10.1002/anie.202005842
J. Zhu, P. Wei, K. Li, et al., ACS Sustain. Chem. Eng. 7 (2019) 660-668.
doi: 10.1021/acssuschemeng.8b04259
H. Chen, X. Zou, Inorg. Chem. Front. 7 (2020) 2248-2264.
doi: 10.1039/d0qi00146e
G. Akopov, M. T. Yeung, R. B. Kaner, Angew. Chem. Int. Ed. 51 (2012) 12703-12706.
doi: 10.1002/adma.201604506
H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, B. P. T. Fokwa, Angew. Chem. Int. Ed. 56 (2017) 5575-5578.
doi: 10.1002/anie.201611756
P. R. Jothi, Y. M. Zhang, J. P. Scheifers, H. Park, B. P. T. Fokwa, Sustain. Energ. Fuels 1 (2017) 1928-1934.
doi: 10.1039/C7SE00397H
H. Li, P. Wen, Q. Li, et al., Adv. Energy Mater. 7 (2017) 1700513.
doi: 10.1002/aenm.201700513
E. Lee, H. Park, H. Joo, B.P.T. Fokwa, Angew. Chem. Int. Ed. 59 (2020) 11774-11778.
doi: 10.1002/anie.202000154
X. Guo, S. Lin, J. Gu, et al., Adv. Funct. Mater. 31 (2021) 2008056.
doi: 10.1002/adfm.202008056
L. Wang, J. Li, X. Zhao, Adv. Mater. Interfaces 6 (2019) 1801690.
doi: 10.1002/admi.201801690
Z.H. Pu, T.T. Liu, G.X. Zhang, et al., Small Methods 5 (2021) 2100699.
doi: 10.1002/smtd.202100699
J. Masa, W. Schuhmann, ChemCatChem 11 (2019) 5842-5854.
doi: 10.1002/cctc.201901151
D. K. Mann, J. Xu, N. E. Mordvinova, et al., Chem. Sci. 10 (2019) 2796-2804.
doi: 10.1039/c8sc04106g
R. F. Tian, S. J. Zhao, J. K. Li, et al., J. Mater. Chem. A 9 (2021) 6469-6475.
doi: 10.1039/d0ta10010b
X. Ma, K. Zhao, Y. Sun, et al., Catal. Sci. Technol. 10 (2020) 2165-2172.
doi: 10.1039/d0cy00099j
A. Saad, Y. Gao, A. Ramiere, et al., Small 18 (2022) 2201067.
doi: 10.1002/smll.202201067
J. Masa, I. Sinev, H. Mistry, et al., Adv. Energy Mater. 7 (2017) 1700381.
doi: 10.1002/aenm.201700381
X. Ma, J. Wen, S. Zhang, et al., ACS Sustain. Chem. Eng. 5 (2017) 10266-10274.
doi: 10.1021/acssuschemeng.7b02281
X. Zheng, B. Zhang, P. De Luna, et al. Nat. Chem. 10 (2018) 149-154.
doi: 10.1038/nchem.2886
D. A. Kuznetsov, B. Han, Y. Yu, et al., Joule 2 (2018) 225-244.
doi: 10.1016/j.joule.2017.11.014
W. J. Jiang, S. Niu, T. Tang, et al., Angew. Chem. Int. Ed. 56 (2017) 6572-6577.
doi: 10.1002/anie.201703183
J. Li, Y. Liu, H. Chen, et al., Adv. Funct. Mater. 31 (2021) 2101820.
doi: 10.1002/adfm.202101820
R. J. Toh, H. L. Poh, Z. Sofer, M. Pumera, et al., Chem. Asian J. 8(6) (2013) 1295-1300.
doi: 10.1002/asia.201300068
Y. Y. Chen, Y. Zhang, W. J. Jiang, et al., ACS Nano 10(9) (2016) 8851-8860.
doi: 10.1021/acsnano.6b04725
D. Wang, T. Liu, J. Wang, Z. Wu, Carbon 139 (2018) 845-852.
doi: 10.1016/j.carbon.2018.07.043
H. Wang, C. Tsai, D. Kong, Nano Res. 8 (2015) 566–575.
doi: 10.1007/s12274-014-0677-7
A. Sarapuu, E. Kibena-P. ldsepp, M. Borgheib, K. Tammeveski, J. Mater. Chem. A 6 (2018) 776-804.
doi: 10.1039/C7TA08690C
B. Jiang, X. G. Zhang, K. Jiang, et al., J. Am. Chem. Soc. 140 (2018) 2880-2889.
doi: 10.1021/jacs.7b12506
T. W. Jiang, Y. W. Zhou, X. Y. Ma, et al., ACS Catal. 11 (2021) 840-848.
doi: 10.1021/acscatal.0c03725
Y. Zhou, F. Che, M. Liu, et al., Nat. Chem. 10 (2018) 974-980.
doi: 10.1038/s41557-018-0092-x
Y. Song, J. R. C. Junqueira, N. Sikdar, et al., Angew. Chem. Int. Ed. 60 (2021) 9135-9141.
doi: 10.1002/anie.202016898
J. Li, J. Chen, Q. Wang, W. B. Cai, S. Chen, Chem. Mater. 29 (2017) 10060-10067.
doi: 10.1021/acs.chemmater.7b03732
F. Li, Q. Tang, Nanoscale 11 (2019) 18769-18778.
doi: 10.1039/c9nr06469a
K. Chu, Y. P. Liu, Y. H. Cheng, Q. Q. Li, J. Mater. Chem. A 8 (2020) 5200-5208.
doi: 10.1039/d0ta00220h
X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, et al., Joule 2 (2018) 1610-1622.
doi: 10.1016/j.joule.2018.06.007
K. Natsui, H. Iwakawa, N. Ikemiya, K. Nakata, Y. Einaga, Chem. Int. Ed. 57 (2018) 2639-2643.
doi: 10.1002/anie.201712271
L. Yang, S. Jiang, Y. Zhao, Angew. Chem. Int. Ed. 50 (2011) 7132-7135.
doi: 10.1002/anie.201101287
J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114 (2010) 13118-13125.
doi: 10.1021/jp104488b
I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed. 44 (2005) 3565-3568.
doi: 10.1002/anie.200500314
K. Maeda, N. Sakamoto, T. Ikeda, et al., Chem. Eur. J. 16 (2010) 7750-7759.
doi: 10.1002/chem.201000616
F. N. Sayed, O. D. Jayakumar, R. Sasikala, et al., J. Phys. Chem. C 116 (2012) 12462-12467.
doi: 10.1021/jp3029962
M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, et al., Nat. Chem. 3 (2011) 489-492.
doi: 10.1038/nchem.1048
S. Onsuratoom, T. Puangpetch, S. Chavadej, Chem. Eng. J. 173 (2011) 667-675.
doi: 10.1016/j.cej.2011.08.016
D. Qiao, C. Xu, J. Xu, Catal. Commun. 45 (2014) 44-48.
doi: 10.1016/j.catcom.2013.10.032
L. Bao, F. Yang, D. Cheng, et al., Appl. Surf. Sci. 513 (2020) 145767.
doi: 10.1016/j.apsusc.2020.145767
Q. Zhu, B. Qiu, M. Du, et al., Ind. Eng. Chem. Res. 57 (2018) 8125-8130.
doi: 10.1021/acs.iecr.8b01376
X. Lu, J. Xie, S. Y. Liu, et al., ACS Sustain. Chem. Eng. 6 (2018) 13140-13150.
doi: 10.1021/acssuschemeng.8b02653
L. Jiang, Y. Guo, S. Qi, et al., Dalton Trans. 50 (2021) 17960-17966.
doi: 10.1039/d1dt03633e
X. Meng, J. Yang, S. Xu, et al., Chem. Eng. J. 410 (2021) 128339.
doi: 10.1016/j.cej.2020.128339
Q. Fu, Y. Meng, Z. Fang, ACS Appl. Mater. Interfaces 9 (2017) 2469-2476.
doi: 10.1021/acsami.6b13570
S. Back, S. Siahrostami, Nanoscale Adv. 1 (2019) 132-139.
doi: 10.1039/c8na00059j
Y. Chen, J. Cai, P. Li, et al., Nano Lett. 20 (2020) 6807-6814.
doi: 10.1021/acs.nanolett.0c02782
Q. Li, L. Li, X. Yu, et al., Chem. Eng. J. 399 (2020) 125827.
doi: 10.1016/j.cej.2020.125827
Q. Li, T. Zhang, X. Yu, et al., Front. Chem. 7 (2019) 674.
doi: 10.3389/fchem.2019.00674
C. Deng, W. Li, R. He, W. Shen, M. Li, J. Phys. Chem. 124 (2020) 19530-19537.
doi: 10.1021/acs.jpcc.0c00446
J. Zhao, Z. Chen, J. Am. Chem. Soc. 139 (2017) 12480-12487.
doi: 10.1021/jacs.7b05213
S. Tang, Q. Dang, T. Liu, et al., J. Am. Chem. Soc. 142 (2020) 19308-19315.
doi: 10.1021/jacs.0c09527
D. K. Yesudoss, G. Lee, S. Shanmugam, Appl. Catal. B 287 (2021) 119952.
doi: 10.1016/j.apcatb.2021.119952
H. Liu, X. H. Zhang, Y. X. et al., Adv. Energy Mater. 10 (2020) 1902521.
doi: 10.1002/aenm.201902521
M. A. Légaré, G. Bélanger-Chabot, M. Rang, et al., Nat. Chem. 12 (2020) 1076-1080.
doi: 10.1038/s41557-020-0520-6
Y. Wen, Z. Zhuang, H. Zhu, et al., Adv. Energy Mater. 11 (2021) 2102138.
doi: 10.1002/aenm.202102138
X. Lv, W. Wei, F. Li, B. Huang, Y. Dai, Nano Lett. 19 (2019) 6391-6399.
doi: 10.1021/acs.nanolett.9b02572
H. Yin, L. Y. Gan, P. Wang, J Mater. Chem. A 8 (2020) 3910-3917.
doi: 10.1039/c9ta13700a
P. Lanzafame, S. Perathoner, G. Centi, S. Gross, E. J. M. Hensen, Catal. Sci. Technol. 7 (2017) 5182-5194.
doi: 10.1039/C7CY01067B
Xinyu Tian , Jiaxiang Guo , Zeyi Li , Shihou Sheng , Tianyu Zhang , Xianfei Li , Chuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
A-Yang Wang , Sheng-Hua Zhou , Mao-Yin Ran , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Lihua Gao , Yinglei Han , Chensheng Lin , Huikang Jiang , Guang Peng , Guangsai Yang , Jindong Chen , Ning Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437