-
[1]
T.M. Sherwen, Understanding the Impact of Marine Iodine Chemistry on Climate and Air Quality, University of York, PhD thesis, 2016.
-
[2]
D.D. Xu, M. Dan, Y. Song, et al., China Environ. Sci. 25 (2005) 17-21.
-
[3]
G. Tang, J. Zhang, X. Zhu, T. et al., Atoms. Chem. Phys. 16 (2016) 2459-2475.
doi: 10.5194/acp-16-2459-2016
-
[4]
M. Legrand, J.R. McConnell, S. Preunkert, et al., Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 12136-12141.
doi: 10.1073/pnas.1809867115
-
[5]
Y.C. Gao, X.W. Wu, M.X. Sun, et al., Environ. Sci. Technol. 33 (2010) 152-155.
doi: 10.1631/jzus.A1000244
-
[6]
Z.L. Cheng, K.S. Lam, L.Y. Chan, et al., Atmos. Environ. 34 (2000) 2771-2783.
doi: 10.1016/S1352-2310(99)00343-X
-
[7]
C.D. O'Dowd, J.L. Jimenez, R. Bahreini, et al., Nature 417 (2002) 632-636.
doi: 10.1038/nature00775
-
[8]
A. Saiz-Lopez, J.M. Plane, A.R. Baker, et al., Chem. Rev. 112 (2012) 1773-1804.
doi: 10.1021/cr200029u
-
[9]
X.L. Hou, V. Hansen, A. Aldahan, et al., Anal. Chim. Acta 632 (2009) 181-196.
doi: 10.1016/j.aca.2008.11.013
-
[10]
OSPAR data & information management system, available at: https://odims.ospar.org/en/search/?dataset=discharges_nuclear, Last access: 2nd March, 2022.
-
[11]
X. Zhao, X.L. Hou, W.J. Zhou, Environ. Sci. Technol. 53 (2019) 8706-8714.
doi: 10.1021/acs.est.9b01160
-
[12]
X.L. Hou, A. Aldahan, S.P. Nielsen, et al., Environ. Sci. Technol. 43 (2009) 6522-6528.
doi: 10.1021/es9012678
-
[13]
C. Toyama, Y. Muramatsu, Y. Igarashi, et al., Environ. Sci. Technol. 47 (2013) 8383-8390.
-
[14]
L.Y. Zhang, X.L. Hou, S. Xu, Atoms. Chem. Phys. 16 (2016) 1971-1985.
doi: 10.5194/acp-16-1971-2016
-
[15]
L.Y. Zhang, X.L. Hou, S. Xu, et al., Atoms. Chem. Phys. 20 (2020) 2623-2635.
doi: 10.5194/acp-20-2623-2020
-
[16]
China national environmental monitoring centre, available at: https://www.cnemc.cn, Last access: 2nd March, 2022.
-
[17]
Chinese meteorological science data sharing service Network, available at: https://data.cma.cn, Last access: 2nd March 2022.
-
[18]
S.Q. Xu, Z.Q. Xie, B. Li, et al., Environ. Chem. 7 (2010) 406-412.
doi: 10.1071/EN10048
-
[19]
J.W. Winchester, R.A. Duce, Naturwissenschaften 54 (1967) 110-113.
doi: 10.1007/BF00640572
-
[20]
H. Tsukada, J. Ishida, O. Narita, Atmos. Environ. 25 (1991) 905-908.
doi: 10.1016/0960-1686(91)90132-Q
-
[21]
L.A. Barrie, G. Hartog, J.W. Bottenheim, J. Atmos. Chem. 9 (1989) 101-127.
doi: 10.1007/BF00052827
-
[22]
T. Jabbar, P. Steier, G. Wallner, et al., Environ. Sci. Technol. 46 (2012) 8637-8644.
doi: 10.1021/es300948t
-
[23]
T. Jabbar, P. Steier, G. Wallner, et al., Nucl. Instrum. Meth. B 269 (2011) 3183-3187.
doi: 10.1016/j.nimb.2011.04.023
-
[24]
H. Wershofen, D.C. Aumann, J. Environ. Radioact. 10 (1989) 141-156.
doi: 10.1016/0265-931X(89)90011-8
-
[25]
F.J. Santos, J.M. Lopez-Gutierrez, M. Garcia-Leon, et al., J. Environ. Radioact. 84 (2005) 103-109.
doi: 10.1016/j.jenvrad.2005.03.007
-
[26]
E. Englund, A. Aldahan, X.L. Hou, et al., Nucl. Instrum. Methods. Phys. Res. B 268 (2010) 1139-1141.
doi: 10.1016/j.nimb.2009.10.118
-
[27]
J.E. Moran, U. Fehn, R.T. Teng, Chem. Geol. 152 (1998) 193-203.
doi: 10.1016/S0009-2541(98)00106-5
-
[28]
C. Toyama, Y. Muramatsu, Y. Uchida, et al., J. Environ. Radioact. 113 (2012) 116-122.
doi: 10.1016/j.jenvrad.2012.04.014
-
[29]
N. Chen, Analysis Method of Iodine Isotope in Water Samples and its Application In Environmental Tracing, Chinese Academy of Sciences, PhD thesis, 2018.
-
[30]
X.H. Jiang, A Study on the Level and Variation of 129I in Precipitation in Xi'an Region and its Application as Environmental Tracer, Chinese Academy of Sciences, Master's thesis, Xi'an, 2017
-
[31]
L.Y. Zhang, W.J. Zhou, X.L. Hou, et al., Sci. Total Environ. 409 (2011) 3780-3788.
doi: 10.1016/j.scitotenv.2011.06.007
-
[32]
Y.K. Fan, Spatial Distribution of 129I in Chinese Surface Soil and Preliminary Study on the 129I Chronology, Chinese Academy of Sciences, PhD thesis, Xi'an, 2013
-
[33]
Y.K. Fan, X.L. Hou, W.J. Zhou, et al., J. Environ. Radioact. 154 (2016) 15-24.
doi: 10.1016/j.jenvrad.2016.01.008
-
[34]
S.M. MacDonald, J.C. Gomez Martin, R. Chance, et al., Atoms. Chem. Phys. 14 (2014) 5841-5852.
doi: 10.5194/acp-14-5841-2014
-
[35]
B.C. Sive, R.K. Varner, H. Mao, et al., Geophys. Res. Lett. 34 (2007) 17808.
doi: 10.1029/2007GL030528
-
[36]
W.H. Wu, Sci. Total Environ. 541 (2016) 468-482.
doi: 10.1016/j.scitotenv.2015.09.056
-
[37]
Y.K. Fan, W.J. Zhou, X.L. Hou, Geochim. Cosmochim. Acta 231 (2018) 64-72.
doi: 10.1016/j.gca.2018.04.014
-
[38]
International energy agency, available at: https://www.iea.org/data-and-statistics/data-tables/?country=WORLD&energy=Oil, Last access: 2nd March, 2022.
-
[39]
Y.X. Feng, T. Liu, S. Pan, et al., Environ. Impact Assess 40 (2018) 32-37.
-
[40]
C.J. Hu, S.X. Pei, Y.L. Chen, et al., J. Phys. Chem. A 111 (2007) 6813-6821.
doi: 10.1021/jp070298g
-
[41]
Z.Y. Zeng, The Study of Influence of Atmospheric Iodine on Formation of Secondary Particles, Nanchang University, Master's thesis, Nanchang, 2015
-
[42]
G. Snyder, A. Aldahan, G. Possnert, Geochem. Geophys. Geosystems 11 (2010) Q04010.
-
[43]
X. Zhao, X.L. Hou, J.Z. Du, et al., Environ. Pollut. 245 (2018) 443-452.
-
[44]
L. Liang, Z.W. Han, J.W. Li, et al., Clim. Environ. Res. 25 (2020) 125-138.
-
[45]
J.H. Guo, K.A. Rahn, G.S. Zhuang, Atmos. Environ. 38 (2004) 855-862.
doi: 10.1016/j.atmosenv.2003.10.037