Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies
-
* Corresponding author.
E-mail address: shangbin@xjtu.edu.cn (S. Jin).
Citation: Liping Guo, Jin Zhang, Qi Huang, Wei Zhou, Shangbin Jin. Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies[J]. Chinese Chemical Letters, ;2022, 33(6): 2856-2866. doi: 10.1016/j.cclet.2022.02.065
C.S. Diercks, O.M. Yaghi, Science 355 (2017) eaal1585
doi: 10.1126/science.aal1585
S.Y. Ding, W. Wang, Chem. Soc. Rev. 42 (2013) 548-568
doi: 10.1039/C2CS35072F
M.S. Lohse, T. Bein, Adv. Funct. Mater. 28 (2018) 1705553
doi: 10.1002/adfm.201705553
H. Xu, J. Gao, D. L. Jiang, Nat. Chem. 7 (2015) 905-912
doi: 10.1038/nchem.2352
F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, et al., J. Am. Chem. Soc. 131 (2009) 4570-4571
doi: 10.1021/ja8096256
G. Lin, H. Ding, R. Chen, et al., J. Am. Chem. Soc. 139 (2017) 8705-8709
doi: 10.1021/jacs.7b04141
Y. Meng, Y. Luo, J.L. Shi, et al., Angew. Chem. Int. Ed. 59 (2020) 3624-3629
doi: 10.1002/anie.201913091
B. Gui, G. Lin, H. Ding, et al., Acc. Chem. Res. 53 (2020) 2225-2234
doi: 10.1021/acs.accounts.0c00357
S. Chandra, D.R. Chowdhury, M. Addicoat, et al., Chem. Mater. 29 (2017) 2074-2080
doi: 10.1021/acs.chemmater.6b04178
K. Jeong, S. Park, G.Y. Jung, et al., J. Am. Chem. Soc. 141 (2019) 5880-5885
doi: 10.1021/jacs.9b00543
Y. Hu, L. Wayment, C. Haslam, et al., EnergyChem 3 (2001) 100048
L.K. Wang, J.J. Zhou, Y.B. Lan, et al., Angew. Chem. Int. Ed. 58 (2019) 9443-9447
doi: 10.1002/anie.201903534
J.C. Wang, X. Kan, J.Y. Shang, H. Qiao, Y.B. Dong, J. Am. Chem. Soc. 142 (2020) 16915-16920
doi: 10.1021/jacs.0c07461
W.R. Cui, F.F. Li, R.H. Xu, et al., Angew. Chem. Int. Ed. 59 (2020) 16915-16920
N. Huang, L. Zhai, H. Xu, D. Jiang, J. Am. Chem. Soc. 139 (2017) 2428-2434
doi: 10.1021/jacs.6b12328
L. Ascherl, E.W. Evans, J. Gorman, et al., J. Am. Chem. Soc. 141 (2019) 15693-15699
doi: 10.1021/jacs.9b08079
S. Jhulki, A.M. Evans, X.L. Hao, et al., J. Am. Chem. Soc. 142 (2020) 783-791
doi: 10.1021/jacs.9b08628
H. Yuan, N. Li, J. Linghu, et al., ACS Sens. 5 (2020) 1474-1481
doi: 10.1021/acssensors.0c00495
X. Wang, L. Chen, S.Y. Chong, et al., Nat. Chem. 10 (2018) 1180-1189
doi: 10.1038/s41557-018-0141-5
M. Dogru, M. Handloser, F. Auras, et al., Angew. Chem. Int. Ed. 52 (2013) 2920-2924
doi: 10.1002/anie.201208514
S. Yang, W. Hu, X. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14614-14618
doi: 10.1021/jacs.8b09705
C. Yuan, X. Wu, R. Gao, et al., J. Am. Chem. Soc. 141 (2019) 20187-20197
doi: 10.1021/jacs.9b10007
D.D. Medina, T. Sick, T. Bein, Adv. Energy Mater. 7 (2017) 1700387
doi: 10.1002/aenm.201700387
H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, et al., Angew. Chem. Int. Ed. 57 (2018) 10894-10898
doi: 10.1002/anie.201804753
Z. Meng, A. Aykanat, K.A. Mirica, Chem. Mater. 31 (2018) 819-825
doi: 10.1021/acs.chemmater.8b03897
Z. Xie, B. Wang, Z. Yang, et al., Angew. Chem. Int. Ed. 58 (2019) 15742-15746
doi: 10.1002/anie.201909554
Z. Guo, Y. Zhang, Y. Dong, et al., J. Am. Chem. Soc. 141 (2019) 1923-1927
doi: 10.1021/jacs.8b13551
Q. Xu, S. Tao, Q. Jiang, D. Jiang, J. Am. Chem. Soc. 140 (2018) 7429-7432
doi: 10.1021/jacs.8b03814
H. Li, J. Chang, S. Li, et al., J. Am. Chem. Soc. 141 (2019) 13324-13329
doi: 10.1021/jacs.9b06908
M. Wang, M. Ballabio, M. Wang, et al., J. Am. Chem. Soc. 141 (2019) 16810-16816
doi: 10.1021/jacs.9b07644
S.K.S. Freitas, R.S. Borges, C. Merlini, G.M.O. Barra, P.M. Esteves, J. Phys. Chem. C 121 (2017) 27247-27252
doi: 10.1021/acs.jpcc.7b10487
J. Tan, S. Namuangruk, W. Kong, et al., Angew. Chem. Int. Ed. 55 (2016) 13979-13984
doi: 10.1002/anie.201606155
P.M. Budd, B.S. Ghanem, S. Makhseed, et al., Chem. Commun. (2004) 230-231
doi: 10.1039/b311764b
A.P. Côté, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166-1170
doi: 10.1126/science.1120411
R.W. Tilford, W.R. Gemmill, H.C. zur Loye, J. J. Lavigne, Chem. Mater. 18 (2006) 5296-5301
doi: 10.1021/cm061177g
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814-8933
doi: 10.1021/acs.chemrev.9b00550
H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, et al., Science 316 (2007) 268-272
doi: 10.1126/science.1139915
T. Ma, E.A. Kapustin, S.X. Yin, et al., Science 361 (2018) 48-52
doi: 10.1126/science.aat7679
M. Liu, Q. Huang, S. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 11968-11972
doi: 10.1002/anie.201806664
Y. Hu, N. Dunlap, S. Wan, et al., J. Am. Chem. Soc. 141 (2019) 7518-7525
doi: 10.1021/jacs.9b02448
P.J. Waller, F. Gandara, O.M. Yaghi, Acc. Chem. Res. 48 (2015) 3053-3063
doi: 10.1021/acs.accounts.5b00369
W.K. Haug, E.M. Moscarello, E.R. Wolfson, P.L. McGrier, Chem. Soc. Rev. 49 (2020) 839-864
doi: 10.1039/c9cs00807a
Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Chem. Soc. Rev. 49 (2020) 708-735
doi: 10.1039/c9cs00827f
J.L. Segura, M.J. Mancheno, F. Zamora, Chem. Soc. Rev. 45 (2016) 5635-5671
doi: 10.1039/C5CS00878F
Y. Zeng, R. Zou, Y. Zhao, Adv. Mater. 28 (2016) 2855-2873
doi: 10.1002/adma.201505004
J.A.R. Navarro, Science 361 (2018) 35
doi: 10.1126/science.aau1701
X. Huang, C. Sun, X. Feng, Sci. China Chem. 63 (2020) 1367-1390
doi: 10.1007/s11426-020-9836-x
J. Yang, F. Kang, X. Wang, Q. Zhang, Mater. Horiz. 9 (2022) 121-146
doi: 10.1039/d1mh00809a
X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 4 (2012) 6010-6022
doi: 10.1039/c2cs35157a
C. Gao, J. Li, S. Yin, et al., Angew. Chem. Int. Ed. 58 (2019) 9770-9775
doi: 10.1002/anie.201905591
S. Dalapati, S. Jin, J. Gao, et al., J. Am. Chem. Soc. 135 (2013) 17310-17313
doi: 10.1021/ja4103293
F.J. Uribe-Romo, C.J. Doonan, H. Furukawa, K. Oisaki, O.M. Yaghi, J. Am. Chem. Soc. 133 (2011) 11478-11481
doi: 10.1021/ja204728y
L. Guo, S. Jin, ChemPhotoChem, 3 (2019) 973-983
doi: 10.1002/cptc.201900089
T. Sick, A.G. Hufnagel, J. Kampmann, et al., J. Am. Chem. Soc. 140 (2018) 2085-2092
doi: 10.1021/jacs.7b06081
H. Liu, J. Chu, Z. Yin, et al., Chem 4 (2018) 1696-1709
doi: 10.1016/j.chempr.2018.05.003
E. Jin, M. Asada, Q. Xu, et al., Science 357 (2017) 673-676
doi: 10.1126/science.aan0202
S. Bi, P. Thiruvengadam, S. Wei, et al., J. Am. Chem. Soc. 142 (2020) 11893-11900
doi: 10.1021/jacs.0c04594
J.L. Shi, R. Chen, H. Hao, C. Wang, X. Lang, Angew. Chem. Int. Ed. 59 (2020) 9088-9093
doi: 10.1002/anie.202000723
Y. Zhao, H. Liu, C. Wu, et al., Angew. Chem. Int. Ed. 58 (2019) 5376-5381
doi: 10.1002/anie.201901194
R. Chen, J.L. Shi, Y. Ma, et al., Angew. Chem. Int. Ed. 58 (2019) 6430-6434
doi: 10.1002/anie.201902543
F. Haase, B.V. Lotsch, Chem. Soc. Rev. 49 (2020) 8469-8500
doi: 10.1039/d0cs01027h
S. Kandambeth, A. Mallick, B. Lukose, et al., J. Am. Chem. Soc. 134 (2012) 19524-19527
doi: 10.1021/ja308278w
B. Zhang, M. Wei, H. Mao, et al., J. Am. Chem. Soc. 140 (2018) 12715-12719
doi: 10.1021/jacs.8b08374
H.L. Qian, F.L. Meng, C.X. Yang, X.P. Yan, Angew. Chem. Int. Ed. 59 (2020) 17607-17613
doi: 10.1002/anie.202006535
P.J. Waller, Y.S. AlFaraj, C.S. Diercks, N.N. Jarenwattananon, O.M. Yaghi, J. Am. Chem. Soc. 140 (2018) 9099-9103
doi: 10.1021/jacs.8b05830
K. Wang, Z. Jia, Y. Bai, et al., J. Am. Chem. Soc. 142 (2020) 11131-11138
doi: 10.1021/jacs.0c03418
Y. Su, Y. Wan, H. Xu, et al., J. Am. Chem. Soc. 142 (2020) 13316-13321
doi: 10.1021/jacs.0c05970
K. Wang, L.M. Yang, X. Wang, et al., Angew. Chem. Int. Ed., 56 (2017) 14149-14153
doi: 10.1002/anie.201708548
Y. Jin, Y. Hu, M. Ortiz, et al., Chem. Soc. Rev. 4 (2020) 4637-4666
doi: 10.1039/c9cs00879a
D. Zhou, X. Tan, H. Wu, L. Tian, M. Li, Angew. Chem. Int. Ed. 58 (2019) 1376-1381
doi: 10.1002/anie.201811399
J. Liu, T. Yang, Z.P. Wang, et al., J. Am. Chem. Soc. 142 (2020) 20956-20961
doi: 10.1021/jacs.0c10919
H. Fu, X. Gao, X. Zhang, L. Ling, Cryst. Growth Des. 22 (2022) 1476-1499
doi: 10.1021/acs.cgd.1c01084
H. Li, A.D. Chavez, H. Li, et al., J. Am. Chem. Soc. 139 (2017) 16310-16318
doi: 10.1021/jacs.7b09169
H. Li, A.M. Evans, I. Castano, et al., J. Am. Chem. Soc. 142 (2020) 1367-1374
doi: 10.1021/jacs.9b10869
B.J. Smith, A.C. Overholts, N. Hwang, W.R. Dichtel, Chem. Commun. 52 (2016) 3690-3693
doi: 10.1039/C5CC10221A
C. Feriante, A.M. Evans, S. Jhulki, et al., J. Am. Chem. Soc. 142 (2020) 18637-18644
doi: 10.1021/jacs.0c08390
G. Lin, H. Ding, D. Yuan, B. Wang, C. Wang, J. Am. Chem. Soc. 138 (2016) 3302-3305
doi: 10.1021/jacs.6b00652
V. Lakshmi, C.H. Liu, M.R. Rao, et al., J. Am. Chem. Soc. 142 (2020) 2155-2160
doi: 10.1021/jacs.9b11528
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450-3453
doi: 10.1002/anie.200705710
J. Maschita, T. Banerjee, G. Savasci, et al., Angew. Chem. Int. Ed. 59 (2020) 15750-15758
doi: 10.1002/anie.202007372
J. Liu, W. Zan, K. Li, et al., J. Am. Chem. Soc. 139 (2017) 11666-11669
doi: 10.1021/jacs.7b05025
Y. Gao, C. Wang, H. Hu, et al., Chem. Eur. J. 25 (2019) 15488–15492
doi: 10.1002/chem.201904088
P. Guan, J. Qiu, Y. Zhao, et al., Chem. Commun. 55 (2019) 12459–12462
doi: 10.1039/c9cc05710b
J. Qiu, H. Wang, Y. Zhao, et al., Green Chem. 22 (2020) 2605–2612
doi: 10.1039/d0gc00223b
Z. Yang, H. Chen, S. Wang, et al., J. Am. Chem. Soc., 1429 (2020) 6856-6860
doi: 10.1021/jacs.0c00365
C. Kang, Z. Zhang, V. Wee, et al., J. Am. Chem. Soc. 142 (2020) 12995-13002
doi: 10.1021/jacs.0c03691
L. Ascherl, T. Sick, J.T. Margraf, et al., Nat. Chem. 8 (2016) 310-316
doi: 10.1038/nchem.2444
L. Xu, S.Y. Ding, J. Liu, et al., Chem. Commun. 52 (2016) 4706-4709
doi: 10.1039/C6CC01171C
X. Guo, Y. Tian, M. Zhang, et al., Chem. Mater. 30 (2018) 2299-2308
doi: 10.1021/acs.chemmater.7b05121
X. Liu, J. Li, B. Gui, et al., J. Am. Chem. Soc. 143 (2021) 2123-2129
doi: 10.1021/jacs.0c12505
B.J. Smith, A.C. Overholts, N. Hwang, W. R. Dichtel, Chem. Commun. 52 (2016) 3690–3693
doi: 10.1039/C5CC10221A
Y. Jin, Y. Hu, W. Zhang, Nat. Rev. Chem. 1 (2017) 0056
doi: 10.1038/s41570-017-0056
F. Haase, K. Gottschling, L. Stegbauer, et al., Mater. Chem. Front. 1 (2017) 1354-1361
doi: 10.1039/C6QM00378H
C.M. Thompson, G. Occhialini, G.T. McCandless, et al., J. Am. Chem. Soc. 139 (2017) 10506-10513
doi: 10.1021/jacs.7b05555
Z. Li, L. Sheng, H. Wang, et al., J. Am. Chem. Soc. 143 (2021) 92-96
doi: 10.1021/jacs.0c11313
H. Ding, J. Li, G. Xie, et al., Nat. Commun. 9 (2018) 5234
doi: 10.1038/s41467-018-07670-4
H. Li, Q. Pan, Y. Ma, et al., J. Am. Chem. Soc. 13 (2016) 14783-14788
doi: 10.1021/jacs.6b09563
C. Gao, J. Li, S. Yin, J. Sun, C. Wang, J. Am. Chem. Soc. 142 (2020) 3718-3723
doi: 10.1021/jacs.9b13824
N. Keller, D. Bessinger, S. Reuter, et al., J. Am. Chem. Soc. 139 (2017) 8194-8199
doi: 10.1021/jacs.7b01631
Z.F. Pang, T.Y. Zhou, R. R. Liang, et al., Chem. Sci. 8 (2017) 3866-3870
doi: 10.1039/C6SC05673C
Z. Zhang, C. He, X. Chen, Mater. Chem. Front. 2 (2018) 1765-1778
doi: 10.1039/c8qm00317c
M. Matsumoto, R.R. Dasari, W. Ji, et al., J. Am. Chem. Soc. 139 (2017) 4999-5002
doi: 10.1021/jacs.7b01240
S.Y. Yu, J. Mahmood, H.J. Noh, et al., Angew. Chem. Int. Ed. 57 (2018) 8438-8442
doi: 10.1002/anie.201801128
E. Jin, J. Li, K. Geng, et al., Nat. Commun. 9 (2018) 4143
doi: 10.1038/s41467-018-06719-8
S. Zhang, G. Cheng, L. Guo, et al., Angew. Chem. Int. Ed. 59 (2020) 6007-6014
doi: 10.1002/anie.201914424
D. Zhu, Z. Zhang, L.B. Alemany, et al., Chem. Mater. 33 (2021) 3394-3400
doi: 10.1021/acs.chemmater.1c00737
A.M. Pütz, M.W. Terban, S. Bette, et al., Chem. Sci. 11 (2020) 12647-12654
doi: 10.1039/d0sc03048a
Y. Zhu, P. Shao, L. Hu, et al., J. Am. Chem. Soc. 142 (2021) 7897-7902
doi: 10.1021/jacs.1c02932
X. Li, J. Qiao, S.W. Chee, et al., J. Am. Chem. Soc. 142 (2020) 4932-4943
doi: 10.1021/jacs.0c00553
H.J. Da, C.X. Yang, H.L. Qian, X.P. Yan, J. Mater. Chem. A 8 (2020) 12657-12664
doi: 10.1039/d0ta01037e
P. Albacete, J.I. Martinez, X. Li, et al., J. Am. Chem. Soc. 140 (2018) 12922-12929
doi: 10.1021/jacs.8b07450
H.L. Nguyen, C. Gropp, Y. Ma, C. Zhu, O.M. Yaghi, J. Am. Chem. Soc. 142 (2020) 20335-20339
doi: 10.1021/jacs.0c11064
A. Acharjya, L.L. Dunbar, J. Roeser, P. Pachfule, A. Thomas, J. Am. Chem. Soc. 142 (2020) 14033-14038
doi: 10.1021/jacs.0c04570
X. Wang, M. Bahri, Z. Fu, et al., J. Am. Chem. Soc. 143 (2021) 15011-15016
doi: 10.1021/jacs.1c08351
Y. Wang, Y. Liu, H. Li, et al., J. Am. Chem. Soc. 142 (2020) 3736-3741
doi: 10.1021/jacs.0c00560
T. Zhou, L. Wang, X. Huang, et al., Nat. Commun. 12 (2021) 3934
doi: 10.1038/s41467-021-24179-5
T. Sick, J.M. Rotter, S. Reuter, et al., J. Am. Chem. Soc., 141 (2019) 12570-12581
doi: 10.1021/jacs.9b02800
C.H. Feriante, S. Jhulki, A.M. Evans, et al., Adv. Mater. 32 (2020) e1905776
doi: 10.1002/adma.201905776
S. Kandambeth, D.B. Shinde, M.K. Panda, et al., Angew. Chem. Int. Ed. 52 (2013) 13052-13056
doi: 10.1002/anie.201306775
X. Chen, M. Addicoat, E. Jin, et al., J. Am. Chem. Soc. 137 (2015) 3241-3247
doi: 10.1021/ja509602c
R.A. Maia, F.L. Oliveira, M. Nazarkovsky, P. M. Esteves, Cryst. Growth Des. 18 (2018) 5682-5689
doi: 10.1021/acs.cgd.8b01110
A.M. Evans, L. R. Parent, N.C. Flanders, et al., Science 361 (2018) 52-57
doi: 10.1126/science.aar7883
R.L. Li, N.C. Flanders, A.M. Evans, et al., Chem. Sci. 10 (2019) 3796-3801
doi: 10.1039/c9sc00289h
M. Liu, K. Jiang, X. Ding, et al., Adv. Mater. 31 (2019) e1807865
doi: 10.1002/adma.201807865
M. Calik, T. Sick, M. Dogru, et al., J. Am. Chem. Soc. 138 (2016) 1234-1239
doi: 10.1021/jacs.5b10708
D. Zhu, L.B. Alemany, W. Guo, R. Verduzco, Poly. Chem. 11 (2020) 4464-4468
doi: 10.1039/d0py00776e
I. Castano, A.M. Evans, H. Li, et al., ACS Cent. Sci. 5 (2019) 1892-1899
doi: 10.1021/acscentsci.9b00944
E. Jin, K. Geng, K.H. Lee, et al., Angew. Chem. Int. Ed. 59 (2020) 12162-12169
doi: 10.1002/anie.202004728
M.C. Daugherty, E. Vitaku, R.L. Li, et al., Chem. Commun. 55 (2019) 2680-2683
doi: 10.1039/c8cc08957d
X. Li, C. Zhang, S. Cai, et al., Nat. Commun. 9 (2018) 2998
doi: 10.1038/s41467-018-05462-4
P.J. Waller, S.J. Lyle, T.M. Osborn Popp, et al., J. Am. Chem. Soc. 138 (2016) 15519-15522
doi: 10.1021/jacs.6b08377
H. Liu, J. Chu, Z. Yin, et al., Chem 4 (2018) 1696-1709
doi: 10.1016/j.chempr.2018.05.003
S.J. Lyle, T.M. Osborn Popp, P.J. Waller, X. Pei, J. Am. Chem. Soc. 141 (2019) 11253-11258
doi: 10.1021/jacs.9b04731
C. Yuan, S. Fu, K. Yang, et al., J. Am. Chem. Soc. 143 (2021) 369-381
doi: 10.1021/jacs.0c11050
C. Fan, H. Wu, J. Guan, et al., Angew. Chem. Int. Ed. 60 (2021) 18051-18058
doi: 10.1002/anie.202102965
W. Kong, W. Jia, R. Wang, et al., Chem. Commun. 55 (2018) 75-78
Z. Miao, G. Liu, Y. Cui, et al., Angew. Chem. Int. Ed. 58 (2019) 4906-4910
doi: 10.1002/anie.201813999
Y. Zhai, G. Liu, F. Jin, et al., Angew. Chem. Int. Ed. 58 (2019) 17679-17683
doi: 10.1002/anie.201911231
C. Qian, Q.Y. Qi, G.F. Jiang, et al., J. Am. Chem. Soc. 139 (2017) 6736-6743
doi: 10.1021/jacs.7b02303
H.L. Qian, Y. Li, X.P. Yan, J. Mater. Chem. A 6 (2018) 17307-17311
doi: 10.1039/c8ta06195e
S. Karak, S. Kandambeth, B.P. Biswal, et al., J. Am. Chem. Soc. 139 (2017) 1856-1862
doi: 10.1021/jacs.6b08815
Y.C. Yuan, B. Sun, A.M. Cao, D. Wang, L.J. Wan, Chem. Commun. 54 (2018) 5976-5979
doi: 10.1039/C8CC02381F
L. Guo, X. Wang, Z. Zhan, et al., Chem. Mater. 33 (2021) 1994-2003
doi: 10.1021/acs.chemmater.0c03716
Q. Zhu, X. Wang, R. Clowes, et al., J. Am. Chem. Soc. 142 (2020) 16842-16848
doi: 10.1021/jacs.0c07732
S. Karak, K. Dey, A. Torris, et al., J. Am. Chem. Soc. 141 (2019) 7572-7581
doi: 10.1021/jacs.9b02706
D. Zhu, Y. Zhu, Q. Yan, et al., Chem. Mater. 33 (2021) 4216-4224
doi: 10.1021/acs.chemmater.1c01122
T. Sun, L. Wei, Y. Chen, Y. Ma, Y.B. Zhang, J. Am. Chem. Soc. 141 (2019) 10962-10966
doi: 10.1021/jacs.9b04895
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Jiahao Li , Guinan Chen , Chunhong Chen , Yuanyuan Lou , Zhihao Xing , Tao Zhang , Chengtao Gong , Yongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760
Guanyang Zeng , Xingqiang Liu , Liangqiao Wu , Zijie Meng , Debin Zeng , Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462
Yingxiao Zong , Yangfei Wei , Xiaoqing Liu , Junke Wang , Huanfang Guo , Junli Wang , Zhuangzhi Shi , Tao Tu , Cheng Yang , Chongyang Wang , Leyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808