A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection
-
* Corresponding author.
E-mail addresses: anderson-qian@163.com, zhiyongqian@scu.edu.cn (Z. Qian).
Citation: Yan Yu, Meng Pan, Jinrong Peng, Danrong Hu, Ying Hao, Zhiyong Qian. A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection[J]. Chinese Chemical Letters, ;2022, 33(9): 4133-4145. doi: 10.1016/j.cclet.2022.02.045
S. Zhao, G.C. Zang, Y.C. Zhang, et al., Biosens. Bioelectron. 179 (2021) 113052.
doi: 10.1016/j.bios.2021.113052
C.C. Hsu, Z.Q. Xu, Y.C. Xu, et al., Sens. Actuat. A 322 (2021) 112630.
doi: 10.1016/j.sna.2021.112630
Y. Wandee, D. Uttapap, P. Mischnick, V. Rungsardthong, Food Chem. 348 (2021) 129078.
doi: 10.1016/j.foodchem.2021.129078
C. Lennicke, J. Rahn, R. Lichtenfels, et al., Cell Commun. Signal. 13 (2015) 39.
doi: 10.1186/s12964-015-0118-6
C.R. Reczek, N.S. Chandel, Annu. Rev. Cancer Biol. 1 (2017) 79-98.
doi: 10.1146/annurev-cancerbio-041916-065808
C. Lismont, I. Revenco, M. Fransen, Int. J. Mol. Sci. 20 (2019) 3673.
doi: 10.3390/ijms20153673
M. Schieber, N.S. Chandel, Curr. Biol. 24 (2014) R453-R462.
doi: 10.1016/j.cub.2014.03.034
G. Calabrese, E. Peker, P.S. Amponsah, et al., EMBO J. 38 (2019) e101552.
C.H. Reid, N.J. Finnerty, Biosensors (Basel) 17 (2017) 1596.
doi: 10.3390/s17071596
O.M. Subach, T.A. Kunitsyna, O.A. Mineyeva, et al., Int. J. Mol. Sci. 20 (2019) 3138.
doi: 10.3390/ijms20133138
N.V. Klassen, D. Marchington, H.C.E. McGowan, Anal. Chem. 66 (1994) 2921-2925.
doi: 10.1021/ac00090a020
C. Yik Sham Chung, G.A. Timblin, K. Saijo, C.J. Chang, J. Am. Chem. Soc. 140 (2018) 6109-6121.
doi: 10.1021/jacs.8b02279
J. Xu, Y. Zhang, H. Yu, et al., Anal. Chem. 88 (2016) 1455-1461.
doi: 10.1021/acs.analchem.5b04424
M. Haddad Irani-Nezhad, J. Hassanzadeh, A. Khataee, Y. Orooji, Molecules 24 (2019) 689.
doi: 10.3390/molecules24040689
G. Zambrano, F. Nastri, V. Pavone, et al., Sensors (Basel) 20 (2020) 3793.
doi: 10.3390/s20133793
D. Mukhopadhyay, D. Sinha Dasgupta, et al., Free Radicals Antioxid. 6 (2015) 123-131.
A.S. Ivanova, A.D. Merkuleva, S.V. Andreev, K.A. Sakharov, Food Chem. 283 (2019) 431-436.
doi: 10.1016/j.foodchem.2019.01.051
S.M. Steinberg, Environ. Monit. Assess. 185 (2013) 3749-3757.
doi: 10.1007/s10661-012-2825-4
W.X. Wang, W.L. Jiang, G.J. Mao, et al., Anal. Chem. 93 (2021) 3301-3307.
doi: 10.1021/acs.analchem.0c05364
W. Chen, S. Cai, Q.Q. Ren, et al., Analyst 137 (2012) 49-58.
doi: 10.1039/C1AN15738H
X.Y. Yang, P.P. Qiu, J.P. Yang, et al., Small 17 (2021) 1904022.
doi: 10.1002/smll.201904022
G. Rocchitta, A. Spanu, S. Babudieri, et al., Biosensors (Basel) 16 (2016) 780.
doi: 10.3390/s16060780
J.N. Tiwari, V. Vij, K.C. Kemp, K.S. Kim, ACS Nano 10 (2016) 46-80.
doi: 10.1021/acsnano.5b05690
S.J. Rowley-Neale, E.P. Randviir, A.S. Abo Dena, C.E. Banks, Appl. Mater. Today 10 (2018) 218-226.
doi: 10.1016/j.apmt.2017.11.010
C.Z. Zhu, G.H. Yang, H. Li, et al., Anal. Chem. 87 (2015) 230-249.
doi: 10.1021/ac5039863
D. Thatikayala, D. Ponnamma, K.K. Sadasivuni, et al., Biosensors (Basel) 10 (2020) 151.
C.R. Zhao, X.L. Li, S.X. An, et al., Sci. Bull. 64 (2019) 1272-1279.
doi: 10.1016/j.scib.2019.07.015
N. Joshi, T. Hayasaka, Y. Liu, et al., Microchim. Acta 185 (2018) 213.
doi: 10.1007/s00604-018-2750-5
Y.B. Hou, K. Sheng, Y. Lu, et al., Microchim. Acta 185 (2018) 397.
doi: 10.1007/s00604-018-2925-0
H.Y. Liu, L.Y. Weng, C. Yang, Microchim. Acta 184 (2017) 1267-1283.
doi: 10.1007/s00604-017-2179-2
X.W. Huang, S. Xu, W. Zhao, et al., ACS Appl. Nano Mater. 3 (2020) 9158-9166.
doi: 10.1021/acsanm.0c01800
L. Zanetti-Polzi, I. Daidone, C.A. Bortolotti, S. Corni, J. Am. Chem. Soc. 136 (2014) 12929-12937.
doi: 10.1021/ja505251a
Y. Luo, H. Liu, Q. Rui, Y. Tian, Anal. Chem. 81 (2009) 3035-3041.
doi: 10.1021/ac802721x
P.A. Walton, C. Brees, C. Lismont, et al., BBA -Mol. Cell Res. 1864 (2017) 1833-1843.
R. Qu, L.L. Shen, Z.H. Chai, et al., ACS Appl. Mater. Interfaces 6 (2014) 19207-19216.
doi: 10.1021/am505232h
Y.F. Wang, J. Du, Y.Y. Li, et al., Colloids Surf. B 90 (2012) 62-67.
doi: 10.1016/j.colsurfb.2011.09.045
X.Y. Yang, P.P. Qiu, J.P. Yang, et al., Small 17 (2019) 1904022.
W.P. Liu, H.H. Pan, C.X. Liu, et al., ACS Appl. Mater. Interfaces 11 (2019) 11466-11473.
doi: 10.1021/acsami.8b22686
G. Bai, X. Xu, Q. Dai, et al., Analyst 144 (2019) 481-487.
doi: 10.1039/C8AN01712C
H. Jiang, C. Du, Z. Zou, et al., J. Solid State Electrochem. 13 (2009) 791-798.
doi: 10.1007/s10008-008-0612-5
M. Murphy, K. Theyagarajan, P. Ganesan, et al., Appl. Surf. Sci. 492 (2019) 718-725.
doi: 10.1016/j.apsusc.2019.06.283
M. Lian, X. Chen, Y. Lu, W. Yang, ACS Appl. Mater. Interfaces 8 (2016) 25036-25042.
doi: 10.1021/acsami.6b05409
L. Gao, J. Zhuang, L. Nie, et al., Nat. Nanotechnol. 2 (2007) 577-583.
doi: 10.1038/nnano.2007.260
J. Wu, X. Wang, Q. Wang, et al., Chem. Soc. Rev. 48 (2019) 1004-1076.
doi: 10.1039/C8CS00457A
K. Dhara, D.R. Mahapatra, J. Mater. Sci. 54 (2019) 12319-12357.
doi: 10.1007/s10853-019-03750-y
S.M. Taghdisi, N.M. Danesh, P. Lavaee, et al., RSC Adv. 5 (2015) 43508-43514.
doi: 10.1039/C5RA06326D
C. Jiang, S. Pang, J. Luo, et al., J. Anal. Chem. 74 (2019) 679-685.
doi: 10.1134/S1061934819070049
Z. Huang, B. Liu, J. Liu, Nanoscale 12 (2020) 22467-22472.
doi: 10.1039/D0NR07055F
J. Fan, Y. Cheng, M. Sun, Chem. Rec. 20 (2020) 1474-1504.
doi: 10.1002/tcr.202000087
C.B. Huang, Y. Yao, V. Montes-García, et al., Small 17 (2021) 2007593.
doi: 10.1002/smll.202007593
J. Hovancová, I. Šišoláková, P. Vanýsek, et al., Electroanalysis 31 (2019) 1680-1689.
doi: 10.1002/elan.201900163
Y. Lai, H. Huang, Z. Xia, et al., Mater. Express 9 (2019) 444-450.
doi: 10.1166/mex.2019.1524
R.A. Masitas, S.L. Allen, F.P. Zamborini, J. Am. Chem. Soc. 138 (2016) 15295-15298.
doi: 10.1021/jacs.6b09172
A. Gupta, D.F. Moyano, A. Parnsubsakul, et al., ACS Appl. Mater. Interfaces 8 (2016) 14096-14101.
doi: 10.1021/acsami.6b02548
S.K. Maji, S. Sreejith, A.K. Mandal, et al., ACS Appl. Mater. Interfaces 6 (2014) 13648-13656.
doi: 10.1021/am503110s
N. Wang, Y. Han, Y. Xu, et al., Anal. Chem. 87 (2015) 457-463.
doi: 10.1021/ac502682n
Y. Zhang, Y. Sun, Z. Liu, et al., J. Electroanal. Chem. 656 (2011) 23-28.
doi: 10.1016/j.jelechem.2011.01.037
J. Hu, C. Zhang, X. Li, X. Du, Sensors 20 (2020) 6817.
doi: 10.3390/s20236817
Y. Zhang, J. Xiao, Q. Lv, et al., ACS Appl. Mater. Interfaces 9 (2017) 38201-38210.
doi: 10.1021/acsami.7b08781
C. Zhu, G. Yang, H. Li, et al., Anal. Chem. 87 (2015) 230-249.
doi: 10.1021/ac5039863
G. Chen, I. Roy, C. Yang, P.N. Prasad, Chem. Rev. 116 (2016) 2826-2885.
doi: 10.1021/acs.chemrev.5b00148
L. Wang, Y. Dong, Y. Zhang, et al., NPG Asia Mater. 8 (2016) e337.
doi: 10.1038/am.2016.189
H. Liu, Z. Yan, X. Chen, et al., Research 2020 (2020) 9068270.
J.X. Liu, S.N. Ding, Sens. Actuat. B: Chem. 251 (2017) 200-207.
doi: 10.1016/j.snb.2017.05.043
Y. Zhang, X. Bai, X. Wang, et al., Anal. Chem. 86 (2014) 9459-9465.
doi: 10.1021/ac5009699
G. Yu, W. Wu, X. Pan, et al., Sensors 15 (2015) 2709-2722.
doi: 10.3390/s150202709
R. Jiménez-Pérez, L. Almagro, M.I. González-Sánchez, et al., Bioelectrochemistry 134 (2020) 107526.
doi: 10.1016/j.bioelechem.2020.107526
Y. Sun, M. Luo, X. Meng, et al., Anal. Chem. 89 (2017) 3761-3767.
doi: 10.1021/acs.analchem.7b00248
Y. Yu, J.R. Peng, M. Pan, et al., Small Methods 5 (2021) 2001212.
doi: 10.1002/smtd.202001212
C. Zhao, H. Zhang, J. Zheng, J. Electroanal. Chem. 784 (2017) 55-61.
doi: 10.1016/j.jelechem.2016.12.005
R.M. Sarhan, G.A. El-Nagar, A. Abouserie, C. Roth, ACS Sustain. Chem. Eng. 7 (2019) 4335-4342.
doi: 10.1021/acssuschemeng.8b06182
R. Han, J. Peng, Y. Xiao, et al., Chin. Chem. Lett. 31 (2020) 1717-1728.
doi: 10.1016/j.cclet.2020.03.038
W. Hooch Antink, Y. Choi, K.D. Seong, Y. Piao, Sens. Actuat. B: Chem. 255 (2018) 1995-2001.
doi: 10.1016/j.snb.2017.08.217
D. Yang, N. Ni, L. Cao, et al., Micromachines 10 (2019) 268.
doi: 10.3390/mi10040268
Y. Yang, H. Zhang, Z. Wang, et al., ChemElectroChem 7 (2020) 2485-2492.
doi: 10.1002/celc.202000570
P. Balasubramanian, S.B. He, A. Jansirani, et al., J. Electroanal. Chem. 878 (2020) 114554.
doi: 10.1016/j.jelechem.2020.114554
A. Chen, C. Ostrom, Chem. Rev. 115 (2015) 11999-12044.
doi: 10.1021/acs.chemrev.5b00324
L. Yao, Y. Yan, J.M. Lee, ACS Sustain. Chem. Eng. 5 (2017) 1248-1252.
doi: 10.1021/acssuschemeng.6b02605
K.G. Nikolaev, V. Maybeck, E. Neumann, et al., J. Solid State Electrochem. 22 (2018) 1023-1035.
doi: 10.1007/s10008-017-3829-3
G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron. 103 (2018) 113-129.
doi: 10.1016/j.bios.2017.12.031
S.Z. Bas, C. Cummins, D. Borah, et al., Anal. Chem. 90 (2018) 1122-1128.
doi: 10.1021/acs.analchem.7b03244
P. Wang, L. Cao, Y. Chen, et al., ACS Appl. Nano Mater. 2 (2019) 2204-2211.
doi: 10.1021/acsanm.9b00165
H.L. Xu, W.D. Zhang, Chin. Chem. Lett. 28 (2017) 143-148.
doi: 10.1016/j.cclet.2016.10.008
Y. Qin, Y. Sun, Y. Li, et al., Chin. Chem. Lett. 31 (2020) 774-778.
doi: 10.1016/j.cclet.2019.09.016
H. Gong, C. Zhao, G. Niu, et al., Research 2020 (2020) 1-11.
Y. Zhao, D. Huo, J. Bao, et al., Sens. Actuat. B: Chem. 244 (2017) 1037-1044.
doi: 10.1016/j.snb.2017.01.029
J. Xie, D. Cheng, Z. Zhou, et al., Microchim. Acta 187 (2020) 469.
doi: 10.1007/s00604-020-04389-2
L.H. Nonaka, T.S.D. Almeida, C.B. Aquino, et al., ACS Appl. Nano Mater. 3 (2020) 4859-4869.
doi: 10.1021/acsanm.0c01012
A. Ding, F. Liu, J. Zheng, et al., Macromol. Mater. Eng. 303 (2018) 1800079.
doi: 10.1002/mame.201800079
P. Balasubramanian, M. Annalakshmi, S.M. Chen, et al., ACS Appl. Mater. Interfaces 10 (2018) 43543-43551.
doi: 10.1021/acsami.8b18510
D. Zhen, F. Zhong, D. Yang, et al., Mater. Express 9 (2019) 319-327.
doi: 10.1166/mex.2019.1499
D. Zhang, X. Fan, X. Hao, G. Dong, Ind. Eng. Chem. Res. 58 (2019) 1906-1913.
doi: 10.1021/acs.iecr.8b04869
S. Shao, X. Chen, Y. Chen, et al., ACS Appl. Nano Mater. 3 (2020) 5220-5230.
doi: 10.1021/acsanm.0c00642
R. Yu, C. Pan, J. Chen, et al., Adv. Funct. Mater. 23 (2013) 5868-5874.
doi: 10.1002/adfm.201300593
F. Khan, N. Akhtar, N. Jalal, et al., Microchim. Acta 186 (2019) 127.
doi: 10.1007/s00604-019-3227-x
N. Khaliq, M.A. Rasheed, M. Khan, et al., ACS Appl. Mater. Interfaces 13 (2021) 3653-3668.
doi: 10.1021/acsami.0c19979
X. Jiang, H. Wang, R. Yuan, Y. Chai, Anal. Chem. 90 (2018) 8462-8469.
doi: 10.1021/acs.analchem.8b01168
H. Shirakawa, E.J. Louis, A.G. MacDiarmid, et al., J. Chem. Soc., Chem. Commun. 16 (1977) 578-580.
M.H. Naveen, N.G. Gurudatt, Y.B. Shim, Appl. Mater. Today 9 (2017) 419-433.
doi: 10.1016/j.apmt.2017.09.001
H. Rabl, D. Wielend, S. Tekoglu, et al., ACS Appl. Energy Mater. 3 (2020) 10611-10618.
doi: 10.1021/acsaem.0c01663
Z. Yang, X. Zheng, J. Zheng, Ind. Eng. Chem. Res. 55 (2016) 12161-12166.
doi: 10.1021/acs.iecr.6b02953
Y. Xie, Y. Chen, X. Sun, et al., Chin. Chem. Lett. 32 (2020) 2061-2065.
M.H. Naveen, N.G. Gurudatt, H.B. Noh, Y.B. Shim, Adv. Funct. Mater. 26 (2016) 1590-1601.
doi: 10.1002/adfm.201504506
A.O. Idris, B. Mamba, U. Feleni, Mater. Chem. Phys. 244 (2020) 122641.
doi: 10.1016/j.matchemphys.2020.122641
M. Elancheziyan, S. Senthilkumar, Appl. Surf. Sci. 495 (2019) 143540.
doi: 10.1016/j.apsusc.2019.143540
M. Baghayeri, H. Alinezhad, M. Tarahomi, et al., Appl. Surf. Sci. 478 (2019) 87-93.
doi: 10.1016/j.apsusc.2019.01.201
E. Murugan, D.I. Pakrudheen, Sci. Adv. Mater. 6 (2014) 1-11.
doi: 10.1166/sam.2014.1674
W. Huang, X. Zhou, Y. Luan, et al., J. Sep. Sci. 43 (2020) 954-961.
doi: 10.1002/jssc.201901036
X. Meng, Z. Xiao, S.K. Scott, Propellants Explos. Pyrotech. 44 (2019) 1337-1346.
doi: 10.1002/prep.201900055
L. Uzun, A.P.F. Turner, Biosens. Bioelectron. 76 (2016) 131-144.
doi: 10.1016/j.bios.2015.07.013
J.J. BelBruno, Chem. Rev. 119 (2019) 94-119.
doi: 10.1021/acs.chemrev.8b00171
A.G. Ayankojo, J. Reut, V. Ciocan, et al., Talanta 209 (2020) 120502.
doi: 10.1016/j.talanta.2019.120502
Y. Wu, P. Deng, Y. Tian, et al., Bioelectrochemistry 131 (2020) 107393.
doi: 10.1016/j.bioelechem.2019.107393
S. Jafari, M. Dehghani, N. Nasirizadeh, M. Azimzadeh, J. Electroanal. Chem. 829 (2018) 27-34.
doi: 10.1016/j.jelechem.2018.09.053
V.M. Ekomo, C. Branger, R. Bikanga, et al., Biosens. Bioelectron. 112 (2018) 156-161.
doi: 10.1016/j.bios.2018.04.022
Y. Lai, Y. Deng, G. Yang, et al., J. Biomed. Nanotechnol. 14 (2018) 1688-1694.
doi: 10.1166/jbn.2018.2617
X. Liu, J. Liu, VIEW 2 (2021) 20200102.
doi: 10.1002/VIW.20200102
Y. Yuan, J.X. Wang, Y.H. Cao, J. Electrochem. 25 (2019) 116-122.
B. Sun, X. Ni, Y. Cao, G. Cao, Biosens. Bioelectron. 91 (2017) 354-358.
doi: 10.1016/j.bios.2016.12.056
Z. Hassanvand, F. Jalali, M. Nazari, et al., ChemElectroChem 8 (2021) 15-35.
doi: 10.1002/celc.202001229
Z. Chen, Y. Bai, F. Zhao, et al., J. Biomed. Nanotechnol. 15 (2019) 930-938.
doi: 10.1166/jbn.2019.2744
H. Yan, L. Wang, Y. Chen, et al., Research 2020 (2020) 8202584.
R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297 (2002) 787-792.
doi: 10.1126/science.1060928
M.V. Kharlamova, D. Eder, Synthesis and Applications of Nanocarbons in: J.C. Arnault, D. Eder (Eds. ), John Wiley & Sons, New York, 2020, pp. 107-147.
D. Liu, K. Ni, J. Ye, et al., Adv. Mater. 30 (2018) 1802104.
doi: 10.1002/adma.201802104
J. Si, L. Xu, M. Zhu, et al., Adv. Electron. Mater. 5 (2019) 1900122.
doi: 10.1002/aelm.201900122
F. Napolskiy, M. Avdeev, M. Yerdauletov, et al., Energy Technol. -Ger. 8 (2020) 2000146.
doi: 10.1002/ente.202000146
M. Kumar, J.S. Saini, H. Bhunia, S.R. Chowdhury, Polym. Compos. 41 (2020) 4260-4276.
doi: 10.1002/pc.25709
C.Y. Wang, P. Makvandi, E.N. Zare, et al., Adv. Ther. 3 (2020) 2000024.
doi: 10.1002/adtp.202000024
Z. Zhai, B. Leng, N. Yang, et al., Small 15 (2019) 1901527.
doi: 10.1002/smll.201901527
J. Zheng, D. Song, H. Chen, et al., Chin. Chem. Lett. 31 (2020) 1109-1113.
doi: 10.1016/j.cclet.2019.09.037
W. Ge, L. Pei, Y. Liu, R. Baktur, Microw. Opt. Techn. Lett. 62 (2020) 3857-3863.
doi: 10.1002/mop.32544
Z. Wu, Y. Wang, X. Liu, et al., Adv. Mater. 31 (2019) 1800716.
doi: 10.1002/adma.201800716
V. Schroeder, S. Savagatrup, M. He, et al., Chem. Rev. 119 (2019) 599-663.
doi: 10.1021/acs.chemrev.8b00340
M. Eguílaz, P. Dalmasso, M.D. Rubianes, et al., Curr. Opin. Electrochem. 14 (2019) 157-165.
doi: 10.1016/j.coelec.2019.02.007
J. Bai, C. Sun, X. Jiang, Anal. Bioanal. Chem. 408 (2016) 4705-4714.
doi: 10.1007/s00216-016-9554-4
H. Tavakkoli, M. Akhond, G.A. Ghorbankhani, G. Absalan, Microchim. Acta 187 (2020) 105.
doi: 10.1007/s00604-019-4064-7
J. Li, M. Jiang, M. Su, et al., Anal. Chem. 93 (2021) 6723-6730.
doi: 10.1021/acs.analchem.1c00336
R. Zhang, W. Chen, Biosens. Bioelectron. 89 (2017) 249-268.
doi: 10.1016/j.bios.2016.01.080
L.P. Ma, W.C. Ren, H.M. Cheng, Small Methods 3 (2019) 1900049.
doi: 10.1002/smtd.201900049
H. Huang, H. Shi, P. Das, et al., Adv. Funct. Mater. 30 (2020) 1909035.
doi: 10.1002/adfm.201909035
L. Cai, G. Yu, Small Methods 3 (2019) 1900071.
doi: 10.1002/smtd.201900071
Y. Zhang, H. Zhu, P. Sun, et al., Electroanalysis 31 (2019) 1334-1341.
doi: 10.1002/elan.201900043
C.X. Guo, X.T. Zheng, Z.S. Lu, et al., Adv. Mater. 22 (2010) 5164-5167.
doi: 10.1002/adma.201001699
Y. Sun, M. Luo, Y. Qin, et al., ACS Appl. Mater. Interfaces 9 (2017) 34715-34721.
doi: 10.1021/acsami.7b11758
B. Patella, M. Buscetta, S. Di Vincenzo, et al., Sens. Actuators B: Chem. 327 (2021) 128901.
doi: 10.1016/j.snb.2020.128901
T. Zhang, Y. Gu, C. Li, et al., ACS Appl. Mater. Interfaces 9 (2017) 37991-37999.
doi: 10.1021/acsami.7b14029
R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B 103 (1999) 7743-7746.
doi: 10.1021/jp991673a
M. Zhou, L. Shang, B. Li, et al., Electrochem. Commun. 10 (2008) 859-863.
doi: 10.1016/j.elecom.2008.03.008
J. Xie, B.Q. Li, H.J. Peng, et al., Adv. Mater. 31 (2019) 1903813.
doi: 10.1002/adma.201903813
M.Y. Emran, M.A. Shenashen, H. Morita, S.A. El-Safty, Adv. Healthc. Mater. 7 (2018) 1701459.
doi: 10.1002/adhm.201701459
D.S. Baek, K.A. Lee, J. Park, et al., Angew. Chem. Int. Ed. 60 (2021) 1441-1449.
doi: 10.1002/anie.202012936
X. Cui, L. Gao, S. Lei, et al., Adv. Funct. Mater. 31 (2021) 2009197.
doi: 10.1002/adfm.202009197
X. Bo, M. Zhou, Electrochemical sensors based on ordered mesoporous carbons in: A. Tiwari, F. Kuralay, L. Uzun (Eds. ), Advanced Electrode Materials, John Wiley & Sons, New York, 2016, pp. 213-241.
T. Wang, Z. Peng, Y. Wang, et al., Sci. Rep. -UK 3 (2013) 2693.
doi: 10.1038/srep02693
D. Xu, Q. Lin, H.T. Chang, Small Methods 4 (2020) 1900387.
doi: 10.1002/smtd.201900387
W. Lv, X. Wang, J. Wu, et al., Chin. Chem. Lett. 30 (2019) 1635-1638.
doi: 10.1016/j.cclet.2019.06.029
H. Wu, W. Su, H. Xu, et al., VIEW 2 (2021) 20200061.
doi: 10.1002/VIW.20200061
S.N. Baker, G.A. Baker, Angew. Chem. Int. Ed. 49 (2010) 6726-6744.
doi: 10.1002/anie.200906623
P. Devi, S. Saini, K.H. Kim, Biosens. Bioelectron. 141 (2019) 111158.
doi: 10.1016/j.bios.2019.02.059
N. Dhenadhayalan, K.C. Lin, T.A. Saleh, Small 16 (2020) 1905767.
doi: 10.1002/smll.201905767
J.S. Kumar, S. Bolar, N.C. Murmu, et al., Electroanalysis 31 (2019) 2120-2129.
doi: 10.1002/elan.201900226
Y. Li, Y. Zhong, Y. Zhang, et al., Sens. Actuat. B: Chem. 206 (2015) 735-743.
doi: 10.1016/j.snb.2014.09.016
R. Zhang, Z. Fan, J. Lumin. 234 (2021) 117998.
doi: 10.1016/j.jlumin.2021.117998
J. Ma, G. Chen, W. Bai, J. Zheng, ACS Appl. Mater. Interfaces 12 (2020) 58105-58112.
doi: 10.1021/acsami.0c09254
F. Zhao, S. Zhou, Y. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 4761-4767.
doi: 10.1021/acsami.0c19911
S. Su, X. Han, Z. Lu, et al., ACS Appl. Mater. Interfaces 9 (2017) 12773-12781.
doi: 10.1021/acsami.7b01141
Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Chem. Rev. 119 (2019) 478-598.
doi: 10.1021/acs.chemrev.8b00311
A. Ahmed, P. John, M.H. Nawaz, et al., ACS Appl. Nano Mater. 2 (2019) 5156-5168.
doi: 10.1021/acsanm.9b01036
H. Yang, J. Zhou, J. Bao, et al., Microchem. J. 162 (2021) 105746.
doi: 10.1016/j.microc.2020.105746
A.T.E. Vilian, B. Dinesh, S.M. Kang, et al., Microchim. Acta 186 (2019) 203.
doi: 10.1007/s00604-019-3287-y
T. Wang, H. Zhu, J. Zhuo, et al., Anal. Chem. 85 (2013) 10289-10295.
doi: 10.1021/ac402114c
J. Hu, C. Zhang, X. Li, X. Du, Biosensors (Basel) 20 (2020) 6817.
doi: 10.3390/s20236817
L. Zhu, Y. Zhang, P. Xu, et al., Biosens. Bioelectron. 80 (2016) 601-606.
doi: 10.1016/j.bios.2016.02.019
P. Wei, D. Sun, Y. Niu, et al., Electrochim. Acta 359 (2020) 136962.
doi: 10.1016/j.electacta.2020.136962
B. Dou, J. Yang, R. Yuan, Y. Xiang, Anal. Chem. 90 (2018) 5945-5950.
doi: 10.1021/acs.analchem.8b00894
X. Wu, T. Chen, Y. Chen, G. Yang, J. Mater. Chem. B 8 (2020) 2650-2659.
doi: 10.1039/D0TB00239A
L. Yu, B. Liu, Y. Wang, et al., J. Power Sources 490 (2021) 229250.
doi: 10.1016/j.jpowsour.2020.229250
Q. Lu, J. Wang, B. Li, et al., Anal. Chem. 92 (2020) 7770-7777.
doi: 10.1021/acs.analchem.0c00895
L. Lorencova, T. Bertok, J. Filip, et al., Sens. Actuat. B: Chem. 263 (2018) 360-368.
doi: 10.1016/j.snb.2018.02.124
Y. Dang, X. Guan, Y. Zhou, et al., Sens. Actuat. B: Chem. 319 (2020) 128259.
doi: 10.1016/j.snb.2020.128259
S. Neampet, N. Ruecha, J. Qin, et al., Microchim. Acta 186 (2019) 752.
doi: 10.1007/s00604-019-3845-3
L. Liu, Y. Zhou, S. Liu, M. Xu, ChemElectroChem 5 (2018) 6-19.
doi: 10.1002/celc.201700931
Y.B. Huang, J. Liang, X.S. Wang, R. Cao, Chem. Soc. Rev. 46 (2017) 126-157.
doi: 10.1039/C6CS00250A
N.S. Lopa, M.M. Rahman, F. Ahmed, et al., Microchim. Acta 274 (2018) 49-56.
R. Qiu, Q. Xu, H. Jiang, X. Wang, J. Biomed. Nanotechnol. 15 (2019) 1443-1453.
doi: 10.1166/jbn.2019.2791
S. Dutta, J. Kim, P.H. Hsieh, et al., Small Methods 3 (2019) 1900213.
doi: 10.1002/smtd.201900213
J. Lu, Y. Hu, P. Wang, et al., Sens. Actuat. B: Chem. 311 (2020) 127909.
doi: 10.1016/j.snb.2020.127909
W. Dang, Y. Sun, H. Jiao, et al., J. Electroanal. Chem. 856 (2020) 113592.
doi: 10.1016/j.jelechem.2019.113592
M.A. Riaz, Z. Yuan, A. Mahmood, et al., Sens. Actuat. B: Chem. 319 (2020) 128243.
doi: 10.1016/j.snb.2020.128243
D. Sun, D. Yang, P. Wei, et al., ACS Appl. Mater. Interfaces 12 (2020) 41960-41968.
doi: 10.1021/acsami.0c11269
W.H. Faour, H. Fayyad-Kazan, N. El Zein, Inflamm. Res. 67 (2018) 711-722.
doi: 10.1007/s00011-018-1163-6
K. Gwozdzinski, A. Pieniazek, L. Gwozdzinski, Oxid. Med. Cell. Longevity 2021 (2021) 6639199.
M.L. Kruzel, J.K. Actor, Z. Radak, et al., Innate Immun. 16 (2010) 67-79.
doi: 10.1177/1753425909105317
J. Zhou, C. Liao, L. Zhang, et al., Anal. Chem. 86 (2014) 4395-4401.
doi: 10.1021/ac500231e
M. Lepoivre, J.P. Tenu, J.F. Petit, FEBS Lett. 149 (1982) 233-239.
doi: 10.1016/0014-5793(82)81107-1
Y. Liu, H. Li, S. Gong, et al., Sens. Actuat. B: Chem. 290 (2019) 249-257.
doi: 10.1016/j.snb.2019.03.129
D. Rojas, J.F. Hernández-Rodríguez, F. Della Pelle, et al., Biosens. Bioelectron. 170 (2020) 112669.
doi: 10.1016/j.bios.2020.112669
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Xiaoshuai Wu , Bailei Wang , Yichen Li , Xiaoxuan Guan , Mingjing Yin , Wenquan Lv , Yin Chen , Fei Lu , Tao Qin , Huyang Gao , Weiqian Jin , Yifu Huang , Cuiping Li , Ming Gao , Junyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
Ruixin Liu , Feng Shi , Yanping Xia , Haibing Zhu , Jiawen Cao , Kai Peng , Chuanli Ren , Juan Li , Zhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628