-
[1]
M.M. Abu-Khader, Prog. Nucl. Energy 51 (2009) 225-235.
doi: 10.1016/j.pnucene.2008.05.001
-
[2]
X. Sun, H. Luo, S. Dai, Chem. Rev. 112 (2012) 2100-2128.
doi: 10.1021/cr200193x
-
[3]
C.L. Xiao, C.Z. Wang, L.Y. Yuan, et al., Inorg. Chem. 53 (2014) 1712-1720.
doi: 10.1021/ic402784c
-
[4]
R.A. Peterson, E.C. Buck, J. Chun, et al., Environ. Sci. Technol. 52 (2018) 381-396.
doi: 10.1021/acs.est.7b04077
-
[5]
B.J. Mincher, The nuclear renaissance: producing environmentally sustainable nuclear power, in: C.M. Wai, B.J. Mincher (Eds. ), Nuclear Energy and the Environment, Washington, DC, 2010, pp. 3-10.
-
[6]
C. Xiao, Z. Hassanzadeh Fard, D. Sarma, et al., J. Am. Chem. Soc. 139 (2017) 16494-16497.
doi: 10.1021/jacs.7b10464
-
[7]
S.A. Ansari, P. Pathak, P.K. Mohapatra, V.K. Manchanda, Sep. Purif. Rev. 40 (2011) 43-76.
doi: 10.1080/15422119.2010.545466
-
[8]
W. Jianchen, S. Chongli, Solvent Extr. Ion Exch. 19 (2001) 231-242.
doi: 10.1081/SEI-100102693
-
[9]
C. Madic, B. Boullis, P. Baron, et al., J. Alloys Compd. 444-445 (2007) 23-27.
doi: 10.1016/j.jallcom.2007.05.051
-
[10]
J. Veliscek-Carolan, J. Hazard. Mater. 318 (2016) 266-281.
doi: 10.1016/j.jhazmat.2016.07.027
-
[11]
N.M. Edelstein, J. Fuger, J.J. Katz, L.R. Morss, Summary and comparison of properties of the actinide and transactinide elements, in: L.R. Morss, N.M. Edelstein, J. Fuger (Eds. ), The Chemistry of the Actinide and Transactinide Elements, Springer Netherlands, Dordrecht, 2011, pp. 1753-1835.
-
[12]
M.J. Hudson, L.M. Harwood, D.M. Laventine, F.W. Lewis, Inorg. Chem. 52 (2013) 3414-3428.
doi: 10.1021/ic3008848
-
[13]
P.R. Zalupski, D.D. Ensor, C.L. Riddle, D.R. Peterman, Solvent Extr. Ion Exch. 31 (2013) 430-441.
doi: 10.1080/07366299.2013.800437
-
[14]
M. Weigl, A. Geist, U. Müllich, K. Gompper, Solvent Extr. Ion Exch. 24 (2006) 845-860.
doi: 10.1080/07366290600948582
-
[15]
B.B. Beele, U. Müllich, F. Schwörer, A. Geist, P.J. Panak, Procedia Chem. 7 (2012) 146-151.
doi: 10.1016/j.proche.2012.10.025
-
[16]
D. Magnusson, B. Christiansen, R. Malmbeck, J.P. Glatz, Radiochim. Acta 97 (2009) 497-502.
-
[17]
D. Magnusson, B. Christiansen, M.R.S. Foreman, et al., Solvent Extr. Ion Exch. 27 (2009) 97-106.
doi: 10.1080/07366290802672204
-
[18]
S.Y. Ning, X.P. Wang, Q. Zou, et al., Sci. Rep. 7 (2017) 14679.
doi: 10.1038/s41598-017-14758-2
-
[19]
Y. Li, X. Dong, J. Yuan, et al., Inorg. Chem. 59 (2020) 3905-3911.
doi: 10.1021/acs.inorgchem.9b03566
-
[20]
Y. Li, X. Yang, P. Ren, et al., Inorg. Chem. 60 (2021) 5131-5139.
doi: 10.1021/acs.inorgchem.1c00169
-
[21]
A. Khayambashi, Q. Shu, Y. Wei, F. Tang, L. He, J. Radioanal. Nucl. Chem. 316 (2018) 221-231.
doi: 10.1007/s10967-018-5734-3
-
[22]
Q. Shu, A. Khayambashi, Q. Zou, et al., J. Radioanal. Nucl. Chem. 313 (2017) 29-37.
doi: 10.1007/s10967-017-5293-z
-
[23]
J.S. Fritz, J. Am. Chem. Soc. 122 (2000) 12411-12412.
-
[24]
F. Zha, X. Wang, X. Wang, et al., J. Radioanal. Nucl. Chem. 311 (2017) 1793-1802.
doi: 10.1007/s10967-016-5141-6
-
[25]
S. Usuda, Y. Wei, Y. Xu, et al., J. Nucl. Sci. Technol. 49 (2012) 334-342.
doi: 10.1080/00223131.2012.660018
-
[26]
S. Ning, Q. Zou, X. Wang, R. Liu, Y Wei, Sci. China Chem. 59 (2016) 862-868.
doi: 10.1007/s11426-015-0390-2
-
[27]
Y. Wei, M. Kumagai, Y. Takashima, G. Modolo, R. Odoj, Nucl. Technol. 132 (2000) 413-423.
doi: 10.13182/NT00-A3154
-
[28]
S. Ning, Q. Zou, X. Wang, R. Liu, Y. Wei, J. Nucl. Sci. Technol. 53 (2016) 1417-1425.
doi: 10.1080/00223131.2015.1123122
-
[29]
S. Ning, X. Wang, R. Liu, et al., J. Radioanal. Nucl. Chem. 303 (2015) 2011-2017.
-
[30]
S. Demir, N.K. Brune, J.F. Van Humbeck, et al., ACS Cent. Sci. 2 (2016) 253-265.
doi: 10.1021/acscentsci.6b00066
-
[31]
J.A. Shusterman, H.E. Mason, J. Bowers, et al., ACS Appl. Mater. Interfaces 7 (2015) 20591-20599.
doi: 10.1021/acsami.5b04481
-
[32]
W. Zhang, X. He, G. Ye, R. Yi, J. Chen, Environ. Sci. Technol. 48 (2014) 6874-6881.
doi: 10.1021/es500563q
-
[33]
M.A. Higginson, O.J. Marsden, P. Thompson, F.R. Livens, S.L. Heath, React. Funct. Polym. 91-92 (2015) 93-99.
doi: 10.1016/j.reactfunctpolym.2015.05.002
-
[34]
S. Das, P. Heasman, T. Ben, S. Qiu, Chem. Rev. 117 (2017) 1515-1563.
doi: 10.1021/acs.chemrev.6b00439
-
[35]
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814-8933.
doi: 10.1021/acs.chemrev.9b00550
-
[36]
Y. Tian, G. Zhu, Chem. Rev. 120 (2020) 8934-8986.
doi: 10.1021/acs.chemrev.9b00687
-
[37]
T. Zhang, G. Xing, W. Chen, L. Chen, Mater. Chem. Front. 4 (2020) 332-353.
doi: 10.1039/C9QM00633H
-
[38]
P. Wu, H. Liu, M. Sun, et al., J. Mater. Chem. A 9 (2021) 27320-27331.
doi: 10.1039/D1TA04590C
-
[39]
J.K. Sun, Q. Xu, Energy Environ. Sci. 7 (2014) 2071-2100.
doi: 10.1039/c4ee00517a
-
[40]
X. Zou, H. Ren, G. Zhu, Chem. Commun. 49 (2013) 3925-3936.
doi: 10.1039/c3cc00039g
-
[41]
U. Díaz, A. Corma, Coord. Chem. Rev. 311 (2016) 85-124.
doi: 10.1016/j.ccr.2015.12.010
-
[42]
F.W. Lewis, L.M. Harwood, M.J. Hudson, et al., Inorg. Chem. 52 (2013) 4993-5005.
doi: 10.1021/ic3026842
-
[43]
M.A. Higginson, N.D. Kyle, O.J. Marsden, et al., Dalton Trans. 44 (2015) 16547-16552.
doi: 10.1039/C5DT01867F
-
[44]
F.W. Lewis, L.M. Harwood, M.J. Hudson, et al., J. Am. Chem. Soc. 133 (2011) 13093-13102.
doi: 10.1021/ja203378m
-
[45]
Y. Jin, Y. Zhu, W. Zhang, CrystEngComm 15 (2013) 1484-1499.
doi: 10.1039/C2CE26394G
-
[46]
X. Sun, N. Wang, Y. Xie, et al., Talanta 225 (2021) 122072.
doi: 10.1016/j.talanta.2020.122072
-
[47]
H.L. Nguyen, C. Gropp, Y. Ma, C. Zhu, O.M. Yaghi, J. Am. Chem. Soc. 142 (2020) 20335-20339.
doi: 10.1021/jacs.0c11064
-
[48]
M. Zhang, H. Liu, T. Ma, Z. Song, S. Shao, Chem. Eng. J. 403 (2021) 126379.
doi: 10.1016/j.cej.2020.126379
-
[49]
L. He, S. Liu, L. Chen, et al., Chem. Sci. 10 (2019) 4293-4305.
doi: 10.1039/C9SC00172G
-
[50]
R. Khatoon, Y. Guo, S. Attique, et al., J. Alloys Compd. 837 (2020) 155294.
doi: 10.1016/j.jallcom.2020.155294
-
[51]
Y. Liu, X. Yang, S. Ding, et al., Inorg. Chem. 57 (2018) 5782-5790.
doi: 10.1021/acs.inorgchem.8b00074
-
[52]
S. Trumm, A. Geist, P.J. Panak, T. Fanghänel, Solvent Extr. Ion Exch. 29 (2011) 213-229.
doi: 10.1080/07366299.2011.539129
-
[53]
in F. Deng, X.B. Luo, L. Ding, S.L. Luo, Application of nanomaterials and nanotechnology in the reutilization of metal ion from wastewater, in: X. Luo, F. Deng (Eds. ), Nanomaterials for the Removal of Pollutants and Resource Reutilization Elsevier, Amsterdam, 2019, pp. 149-178.
-
[54]
S. Ploychompoo, Q. Liang, X. Zhou, C. Wei, H. Luo, Phys. E 125 (2021) 114377.
doi: 10.1016/j.physe.2020.114377
-
[55]
Y. Karslyan, F.V. Sloop, L.H. Delmau, et al., RSC Adv. 9 (2019) 26537-26541.
doi: 10.1039/C9RA06115K
-
[56]
C. Adam, P. Kaden, B.B. Beele, et al., Dalton Trans. 42 (2013) 14068-14074.
doi: 10.1039/c3dt50953b
-
[57]
A.L. Goodman, E.T. Bernard, V.H. Grassian, J. Phys. Chem. A 105 (2001) 6443-6457.
doi: 10.1021/jp003722l