Photo-induced carbon dioxide reduction on hexagonal tungsten oxide via an oxygen vacancies-involved process
-
* Corresponding author.
E-mail address: rgli@dicp.ac.cn (R. Li).
Citation: Yi Wang, Runze Liu, Ming Shi, Panwang Zhou, Keli Han, Can Li, Rengui Li. Photo-induced carbon dioxide reduction on hexagonal tungsten oxide via an oxygen vacancies-involved process[J]. Chinese Chemical Letters, ;2023, 34(1): 107200. doi: 10.1016/j.cclet.2022.02.006
S. Navarro-Jaén, M. Virginie, M. Robert, et al., Nat. Rev. Chem. 5 (2021) 564–579.
doi: 10.1038/s41570-021-00289-y
Y.X. Li, D.P. Hui, J.C. Zhao, et al., Nat. Commun. 12 (2021) 123.
doi: 10.1038/s41467-020-20444-1
X.X. Chang, T. Wang, J.L. Gong, Energy Environ. Sci. 9 (2016) 2177–2196.
doi: 10.1039/C6EE00383D
H.L. Huo, D. Liu, A. Li, et al., Nanoscale 12 (2020) 13912–13917.
doi: 10.1039/D0NR02944K
G.G. Zhang, G.S. Li, X.C. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 3433–3437.
doi: 10.1002/anie.201811938
W.G. Tu, Y. Zhou, Z.Z. Zou, Adv. Mater. 26 (2014) 4607–4626.
doi: 10.1002/adma.201400087
H. Li, J. Li, Z.H. Ai, et al., Angew. Chem. Int. Ed. 57 (2018) 122–138.
doi: 10.1002/anie.201705628
G.C. Xi, S.X. Ouyang, J.H. Ye, et al., Angew. Chem. Int. Ed. 51 (2012) 2395–2399.
doi: 10.1002/anie.201107681
L.C. Wang, Y. Wang, Z.F. Liu, et al., J. Mater. Chem. A 4 (2016) 5314–5322.
doi: 10.1039/C5TA10180H
D.L. Liu, C.H. Wang, B. Zhang, et al., Chem 5 (2019) 376–389.
doi: 10.1016/j.chempr.2018.11.001
J.Z. Liao, K.L. Li, Y.J. Sun, et al., Chin. Chem. Lett. 31 (2020) 2737–2741.
doi: 10.1016/j.cclet.2020.03.081
L. Liang, X.D. Li, Y. Xie, et al., Joule 2 (2018) 1004–1016.
doi: 10.1016/j.joule.2018.02.019
Y.F. Sun, S. Gao, F.C. Lei, et al., Chem. Soc. Rev. 44 (2015) 623–636.
doi: 10.1039/C4CS00236A
Y. Liu, X.L. Dong, B. Dong, et al., Colloids Surf. A 621 (2021) 126582.
doi: 10.1016/j.colsurfa.2021.126582
J. Yang, S.Y. Hu, Y.R. Fang, et al., ACS Catal. 9 (2019) 9751–9763.
doi: 10.1021/acscatal.9b02408
W. Pipornpong, R. Wanbayor, V. Ruangpornvisuti, Appl. Surf. Sci. 257 (2011) 10322–10328.
doi: 10.1016/j.apsusc.2011.06.013
L.J. Liu, C.Y. Zhao, Y. Li, et al., J. Phys. Chem. C 116 (2012) 7904–7912.
doi: 10.1021/jp300932b
T. Li, X. Dong, Y.H. Sun, et al., Appl. Surf. Sci. 526 (2020) 146578.
doi: 10.1016/j.apsusc.2020.146578
X. Chen, X. Zhang, Y.H. Li, et al., Appl. Catal. B 281 (2021) 119516.
doi: 10.1016/j.apcatb.2020.119516
Z.L. Wang, X. Mao, P. Chen, et al., Angew. Chem. Int. Ed. 131 (2019) 1042–1046.
doi: 10.1002/ange.201810583
W.H. Kong, R. Zhang, X.P. Sun, et al., Nanoscale 11 (2019) 19274–19277.
doi: 10.1039/C9NR03678D
J.L. Wang, S.H. Kang, H.M. Zhang, et al., Chin. Chem. Lett. 32 (2021) 2833–2836.
doi: 10.1016/j.cclet.2021.01.020
Z.P. Chen, Q.Q. Jiang, F. Cheng, et al., J. Mater. Chem. A 7 (2019) 6099–6112.
doi: 10.1039/C8TA11957K
A. Wagner, C.D. Sahm, E. Reisner, et al., Nat. Catal. 3 (2020) 775–786.
doi: 10.1038/s41929-020-00512-x
S.N. Habisreutinger, L. Schmidt-mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
doi: 10.1002/anie.201207199
A. Li, J.L. Gong, M. Antonietti, et al., Angew. Chem. Int. Ed. 58 (2019) 14549–14555.
doi: 10.1002/anie.201908058
G.G. Zhang, Z.A. Lan, X.C. Wang, ChemCatChem 9 (2015) 1422–1423.
M. Gattrell, N. Gupta, A. Co, J. Electrochem. Soc. 594 (2006) 1–19.
S.S. Tan, L. Zou, E. Hu, Catal. Today 131 (2008) 125–129.
doi: 10.1016/j.cattod.2007.10.011
T.Y. Peng, D.N. Keng, J.R. Xiao, et al., J. Solid State Chem. 194 (2012) 250–256.
doi: 10.1016/j.jssc.2012.05.016
E. Geber, R.J. Ackermann, Inorg. Chem. 5 (1966) 136–142.
doi: 10.1021/ic50035a033
R. Chatten, A.V. Chadwick, A.D. Rougier, et al., J. Phys. Chem. B 109 (2005) 3146–3156.
J.M. Wang, E. Khoo, P.S. Lee, et al., J. Phys. Chem. C 112 (2008) 14306–14312.
doi: 10.1021/jp804035r
M.L. Kang, J.M. Liang, F.F. Wang, et al., Mater. Res. Bull. 121 (2020) 110614.
doi: 10.1016/j.materresbull.2019.110614
W. Zhang, H.L. Hei, Y. Tian, et al., Nano Energy 66 (2019) 104113.
doi: 10.1016/j.nanoen.2019.104113
M.F. Daniel, B. Desbat, J.C. Lassegues, J. Solid State Chem. 67 (1987) 235–247.
doi: 10.1016/0022-4596(87)90359-8
Y.T. Wang, J.M. Cai, M.Q. Wu, et al., Appl. Catal. B 239 (2018) 398–407.
doi: 10.1016/j.apcatb.2018.08.029
S.M. Sun, W. Motonori, J. Wu, et al., J. Am. Chem. Soc. 140 (2018) 6474–6482.
doi: 10.1021/jacs.8b03316
Y.F. Ji, F. Luo, J. Am. Chem. Soc. 138 (2016) 15896–15902.
doi: 10.1021/jacs.6b05695
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298