Nickel-catalyzed reductive cross-coupling of polyfluoroarenes with alkyl electrophiles by site-selective C–F bond activation
-
* Corresponding author.
E-mail address: shiz@nju.edu.cn (Z. Shi).
Citation: Longlong Xi, Liting Du, Zhuangzhi Shi. Nickel-catalyzed reductive cross-coupling of polyfluoroarenes with alkyl electrophiles by site-selective C–F bond activation[J]. Chinese Chemical Letters, ;2022, 33(9): 4287-4292. doi: 10.1016/j.cclet.2022.01.077
A.R. Murphy, J.M. Frechet, Chem. Rev. 107 (2007) 1066–1096.
doi: 10.1021/cr0501386
S. Purser, P.R. Moore, S. Swallow, et al., Chem. Soc. Rev. 37 (2008) 320–330.
doi: 10.1039/B610213C
S. Preshlock, M. Tredwell, V. Gouverneur, Chem. Rev. 116 (2016) 719–766.
doi: 10.1021/acs.chemrev.5b00493
H.B. Mei, A.M. Remete, Y.P. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401–2413.
doi: 10.1016/j.cclet.2020.03.050
X.X. Ma, Q.L. Song, Chem. Soc. Rev. 49 (2020) 9197–9219.
doi: 10.1039/D0CS00604A
V.V. Grushin, Acc. Chem. Res. 43 (2010) 160–171.
doi: 10.1021/ar9001763
T. Liang, C.N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 52 (2013) 8214–8264.
doi: 10.1002/anie.201206566
A.J. Lin, C.B. Huehls, J. Yang, J. Org. Chem. Front. 1 (2014) 434–438.
doi: 10.1039/C4QO00020J
Y. Li, Y. Wu, G.L. Li, et al., Adv. Synth. Catal. 356 (2014) 1412–1418.
doi: 10.1002/adsc.201400101
X.Y. Yang, T. Wu, R.J. Phipps, et al., Chem. Rev. 115 (2015) 826–870.
doi: 10.1021/cr500277b
M.G. Campbell, T. Ritter, Chem. Rev. 115 (2015) 612–633.
doi: 10.1021/cr500366b
R. Szpera, D.F.J. Moseley, L.B. Smith, et al., Angew. Chem. Int. Ed. 58 (2019) 14824–14848.
doi: 10.1002/anie.201814457
J.L. Kiplinger, T.G. Richmond, C.E. Osterberg, Chem. Rev. 94 (1994) 373–431.
doi: 10.1021/cr00026a005
T. Braun, R.N. Perutz, Chem. Commun. (2002) 2749–2757.
W.D. Jones, Dalton Trans. (2003) 3991–3995.
H. Amii, K. Uneyama, Chem. Rev. 109 (2009) 2119–2183.
doi: 10.1021/cr800388c
T. Ahrens, J. Kohlmann, M. Ahrens, et al., Chem. Rev. 115 (2015) 931–972.
doi: 10.1021/cr500257c
O. Eisenstein, J. Milani, R.N. Perutz, Chem. Rev. 117 (2017) 8710–8753.
doi: 10.1021/acs.chemrev.7b00163
T. Fujita, K. Fuchibe, J. Ichikawa, Angew. Chem. Int. Ed. 58 (2019) 390–402.
doi: 10.1002/anie.201805292
M.Y. Wang, Z.Z. Shi, Chem. Rev. 120 (2020) 7348–7398.
doi: 10.1021/acs.chemrev.9b00384
M.Y. Wang, Z.Z. Shi, Chem. Lett. 50 (2021) 553–559.
doi: 10.1246/cl.200826
B.L. Zhao, T. Rogge, L. Ackermann, et al., Chem. Soc. Rev. 50 (2021) 8903–8953.
doi: 10.1039/C9CS00571D
B.L. Zhao, B. Prabagar, Z.Z. Shi, Chem 7 (2021) 2585–2634.
doi: 10.1016/j.chempr.2021.08.001
P.P. Tian, C. Feng, T.P. Loh, Nat. Commun. 6 (2015) 7472.
doi: 10.1038/ncomms8472
J. Zhou, M.W. Kuntze-Fechner, R. Bertermann, et al., J. Am. Chem. Soc. 138 (2016) 5250–5253.
doi: 10.1021/jacs.6b02337
K. Chen, N. Berg, R. Gschwind, et al., J. Am. Chem. Soc. 139 (2017) 18444–18447.
doi: 10.1021/jacs.7b10755
H.B. Wang, N.T. Jui, J. Am. Chem. Soc. 140 (2018) 163–166.
doi: 10.1021/jacs.7b12590
J.F. Hu, Y. Zhao, Z.Z. Shi, Nat. Catal. 1 (2018) 860–869.
doi: 10.1038/s41929-018-0147-9
P. Gao, C.K. Yuan, Y. Zhao, et al., Chem 4 (2018) 2201–2211.
doi: 10.1016/j.chempr.2018.07.003
Y.M. Tian, X.N. Guo, M.W.K. Fechner, et al., J. Am. Chem. Soc. 140 (2018) 17612–17623.
doi: 10.1021/jacs.8b09790
W.G. Xu, H.M. Jiang, H.W. Ong, et al., Angew. Chem. Int. Ed. 59 (2020) 4009–4016.
doi: 10.1002/anie.201911819
T.W. Butcher, J.L. Yang, W.M. Amberg, Nature 583 (2020) 548–553.
doi: 10.1038/s41586-020-2399-1
W.J. Yue, C.S. Day, R. Martin, J. Am. Chem. Soc. 143 (2021) 6395–6400.
doi: 10.1021/jacs.1c03126
C. Zhang, Z.Y. Lin, Y.F. Zhu, et al., J. Am. Chem. Soc. 143 (2021) 11602–11610.
doi: 10.1021/jacs.1c04531
Y.J. Yu, F.L. Zhang, T.Y. Peng, et al., Science 371 (2021) 1232–1240.
doi: 10.1126/science.abg0781
C.D. Nielsen, F.G. Zivkovic, F. Schoenebeck, J. Am. Chem. Soc. 143 (2021) 13029–13033.
doi: 10.1021/jacs.1c07780
T.J. O'Connor, B.K. Mai, J. Nafie, J. Am. Chem. Soc. 143 (2021) 13759–13768.
doi: 10.1021/jacs.1c05769
Y.C. Luo, F.F. Tong, Y.X. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 13971–13979.
doi: 10.1021/jacs.1c07459
N.M. Aston, P. Bamborough, J.B. Buckton, et al., J. Med. Chem. 52 (2009) 6257–6269.
doi: 10.1021/jm9004779
T.E. Wang, B.J. Alfonso, J.A. Love, Org. Lett. 9 (2007) 5629–5631.
doi: 10.1021/ol702591b
A.D. Sun, K. Leung, A.D. Restivo, et al., Chem. Eur. J. 20 (2014) 3162–3168.
doi: 10.1002/chem.201303809
Y.Q. Sun, H.J. Sun, J. Jia, et al., Organometallics 33 (2014) 1079–1081.
doi: 10.1021/om4011609
D.H. Yu, C.S. Wang, C. Yao, Org. Lett. 16 (2014) 5544–5547.
doi: 10.1021/ol502499q
A. Arora, J.D. Weave, Acc. Chem. Res. 49 (2016) 2273–2283.
doi: 10.1021/acs.accounts.6b00259
J. Xie, M. Rudolph, F. Rominger, et al., Angew. Chem. Int. Ed. 56 (2017) 7266–7270.
doi: 10.1002/anie.201700135
X.H. Li, B. Fu, Q. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 23056–23060.
doi: 10.1002/anie.202010492
X. Sun, T. Ritter, Angew. Chem. Int. Ed. 60 (2021) 10557–10562.
doi: 10.1002/anie.202015596
D.A. Everson, D.J. Weix, J. Org. Chem. 79 (2014) 4793–4798.
doi: 10.1021/jo500507s
C.E.I. Knappke, S. Grupe, D. Gartner, et al., Chem. Eur. J. 20 (2014) 6828–6842.
doi: 10.1002/chem.201402302
T. Moragas, A. Correa, R. Martin, et al., Chem. Eur. J. 20 (2014) 8242–8258.
doi: 10.1002/chem.201402509
D.J. Weix, Acc. Chem. Res. 48 (2015) 1767–1775.
doi: 10.1021/acs.accounts.5b00057
J. Gu, X. Wang, W.C. Xue, et al., Org. Chem. Front. 2 (2015) 1411–1421.
doi: 10.1039/C5QO00224A
X. Wang, Y.J. Dai, H.G. Gong, Top. Curr. Chem. 372 (2016) 43.
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
W.C. Xue, X. Jia, X. Wang, et al., Chem. Soc. Rev. 50 (2021) 4162–4184.
doi: 10.1039/D0CS01107J
D.A. Everson, R. Shrestha, D.J. Weix, J. Am. Chem. Soc. 132 (2010) 920–921.
doi: 10.1021/ja9093956
Y. Zhao, D.J. Weix, J. Am. Chem. Soc. 136 (2014) 48–51.
doi: 10.1021/ja410704d
K.M.M. Huihui, J.A. Caputo, Z. Melchor, et al., J. Am. Chem. Soc. 138 (2016) 5016–5019.
doi: 10.1021/jacs.6b01533
J. Sheng, H.Q. Ni, H.R. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 7634–7639.
doi: 10.1002/anie.201803228
K. Wang, Z.T. Ding, Z.J. Zhou, et al., J. Am. Chem. Soc. 140 (2018) 12364–12368.
doi: 10.1021/jacs.8b08190
L.Y. Lv, Z.H. Qiu, J.B. Li, et al., Nat. Commun. 9 (2018) 4739.
T.J. Steiman, J.Y. Liu, A. Mengiste, et al., J. Am. Chem. Soc. 142 (2020) 7598–7605.
doi: 10.1021/jacs.0c01724
Z.J. Li, W.X. Sun, X.X. Wang, et al., J. Am. Chem. Soc. 143 (2021) 3536–3543.
doi: 10.1021/jacs.0c13093
P. Guo, K. Wang, W.J. Jin, et al., J. Am. Chem. Soc. 143 (2021) 513–523.
doi: 10.1021/jacs.0c12462
R.D. He, C.L. Li, Q.Q. Pan, et al., J. Am. Chem. Soc. 141 (2019) 12481–12486.
doi: 10.1021/jacs.9b05224
Z.X. Tian, J.B. Qiao, G.L. Xu, et al., J. Am. Chem. Soc. 141 (2019) 7637–7643.
doi: 10.1021/jacs.9b03863
J.B. Qiao, Y.Q. Zhang, Q.W. Yao, et al., J. Am. Chem. Soc. 143 (2021) 12961–12967.
doi: 10.1021/jacs.1c05670
A.H. Cherney, N.T. Kadunce, S.E. Reisman, J. Am. Chem. Soc. 135 (2013) 7442–7445.
doi: 10.1021/ja402922w
Y. Zhao, D.J. Weix, J. Am. Chem. Soc. 137 (2015) 3237–3240.
doi: 10.1021/jacs.5b01909
K.E. Poremba, N.T. Kadunce, N. Suzuki, et al., J. Am. Chem. Soc. 139 (2017) 5684–5687.
doi: 10.1021/jacs.7b01705
B.P. Woods, M. Orlandi, C.Y. Huang, et al., J. Am. Chem. Soc. 139 (2017) 5688–5691.
doi: 10.1021/jacs.7b03448
X.F. Wei, W. Shu, A. García-Domínguez, et al., J. Am. Chem. Soc. 142 (2020) 13515–13522.
doi: 10.1021/jacs.0c05254
T.Z. Lin, Y.Y. Gu, P.C. Qian, et al., Nat. Commun. 11 (2020) 5638.
doi: 10.1038/s41467-020-19194-x
Y.Z. Zhan, N. Xiao, W. Shu, Nat. Commun. 12 (2021) 928.
doi: 10.1038/s41467-021-21083-w
X. Lu, Y. Wang, B. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 12632–12637.
doi: 10.1021/jacs.7b06469
C. Zhu, Z.Y. Liu, L.N. Tang, et al., Nat. Commun. 11 (2020) 4860.
doi: 10.1038/s41467-020-18658-4
Q. Pan, Y.Y. Ping, Y.F. Wang, et al., J. Am. Chem. Soc. 143 (2021) 10282–10291.
A. Das, N. Chatani, ACS Catal. 11 (2021) 12915–12930.
doi: 10.1021/acscatal.1c03896
M. Tobisu, T. Xu, T. Shimasaki, et al., J. Am. Chem. Soc. 133 (2011) 19505–19511.
Z. Chen, C.Y. He, Z.S. Yin, et al., Angew. Chem. Int. Ed. 52 (2013) 5813.
W.H. Guo, Q.Q. Min, J.W. Gu, et al., Angew. Chem. Int. Ed. 54 (2015) 9075–9078.
I. Nohira, S. Liu, R.P. Bai, J. Am. Chem. Soc. 142 (2020) 17306–17311.
I. Nohira, N. Chatani, ACS Catal. 11 (2021) 4644–4649.
I. Colon, D.R. Kelsey, J. Org. Chem. 51 (1986) 2627–2637.
M.R. Prinsell, D.A. Everson, D.J. Weix, Chem. Commun. 46 (2010) 5743–5745.
A.H. Cherney, S.E. Reisman, J. Am. Chem. Soc. 136 (2014) 14365–14368.
N. Suzuki, J.L. Hofstra, K.E. Poremba, Org. Lett. 19 (2017) 2150–2153.
L. Hu, X. Liu, X.B. Liao, Angew. Chem. Int. Ed. 55 (2016) 9743–9747.
F.L. Chen, K. Chen, Y. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 13929–13935.
L. Peng, Z.Q. Li, G.Y. Yin, Org. Lett. 20 (2018) 1880–1883.
N.T. Kadunce, S.E. Reisman, J. Am. Chem. Soc. 137 (2015) 10480–10483.
J.L. Hofstra, A.H. Cherney, C.M. Ordner, et al., J. Am. Chem. Soc. 140 (2018) 139–142.
Y. Min, J. Sheng, J.L. Yu, et al., Angew. Chem. Int. Ed. 60 (2021) 9947–9952.
M.Q. Konev, L.E. Hanna, E.R. Jarvo, Angew. Chem. Int. Ed. 55 (2016) 6730–6733.
D.A. Everson, B.A. Jones, D.J. Weix, J. Am. Chem. Soc. 134 (2012) 6146–6159.
S. Biswas, D.J. Weix, J. Am. Chem. Soc. 135 (2013) 16192–16197.
Q.H. Ren, F. Jiang, H.G. Gong, J. Organomet. Chem. 770 (2014) 130–135.
X.Q. Wu, J.P. Qu, Y.F. Chen, J. Am. Chem. Soc. 142 (2020) 15654–15660.
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147