Citation: Zhu Chen, Kaixuan Zhao, Ziyu He, Xiaofang Luo, Zuodong Qin, Yimin Tan, Xiangming Zheng, Zuozhong Wu, Yan Deng, Hui Chen, Yuan Guo, Song Li. Development and evaluation of a thermostatic nucleic acid testing device based on magnesium pyrophosphate precipitation for detecting Enterocytozoon hepatopenaei[J]. Chinese Chemical Letters, ;2022, 33(8): 4053-4056. doi: 10.1016/j.cclet.2022.01.072 shu

Development and evaluation of a thermostatic nucleic acid testing device based on magnesium pyrophosphate precipitation for detecting Enterocytozoon hepatopenaei

Figures(4)

  • Enterocytozoon hepatopenaei (EHP) infection has seriously affected prawn culture globally. The symptoms of the infection are not apparent, and traditional detection methods are time consuming and low in accuracy. We developed a new onsite rapid testing device (size 18.8 × 16.7 × 6.6 cm3) for EHP based on magnesium pyrophosphate precipitation and facilitated by loop mediated isothermal amplification (LAMP). The design and fabrication of the device enables efficient light absorbance. The device has a highly sensitive detector, high-precision thermal controller, and humanized touch screen. The temperature control precision of the device is 0.2–0.3 ℃ at 60 ℃, 63 ℃, and 65 ℃. The coefficients of variation values (CVV) of the luminous power in one channel at light on and off were found to be 0.0097 and 0.0014, respectively, within 1 h. The CVV of the background, luminous power, and values of eight PCR tubes filled with pure water were all less than 5%. In the EHP experiment, eight samples (including seven positive and one negative) confirmed the effectiveness of the device, and four positive and four negative samples verified whether cross-contamination exists. Among them, the rise time of the curve was about 15 min. These results assert that the developed device exhibits enhanced stability and uniformity and has excellent performance with high sensitivity, good specificity, and low testing time. Moreover, the optimal and minimum absorbance range was 555–655 nm for monitoring the production of LAMP.
  • 加载中
    1. [1]

      S. Thamizhvanan, S. Sivakumar, K.S. Santhosh, et al., J. Fish. Dis.42 (2019) 447–454.  doi: 10.1111/jfd.12956

    2. [2]

      T. Chaijarasphong, N. Munkongwongsiri, G.D. Stentiford, et al., J. Invertebr. Pathol. 186 (2020) 107458.

    3. [3]

      P.V. Salachan, P. Jaroenlak, S. Thitamadee, O. Itsathitphaisarn, K. Sritunyalucksana, BMC. Vet. Res. 13 (2017) 9.

    4. [4]

      K. Karthikeyan, R. Sudhakaran, J. Fish. Dis. 42 (2019) 397–404.  doi: 10.1111/jfd.12945

    5. [5]

      S.X. Cai, F.D. Kong, S.F. Xu, C.L. Yao, PeerJ 6 (2018) e5993.  doi: 10.7717/peerj.5993

    6. [6]

      P. Jaroenlak, P. Sanguanrut, B.A.P. Williams, PLoS. One. 11 (2016) e0166320.  doi: 10.1371/journal.pone.0166320

    7. [7]

      R. Cruz-Flores, H.N. Mai, B.L. Noble, P.J. Schofield, A.K. Dhar, J. Microbiol. Methods 162 (2019) 38–41.  doi: 10.1016/j.mimet.2019.05.008

    8. [8]

      J.E. Han, S.C. Lee, S.C. Park, et al., Aquaculture 517 (2020) 734812.  doi: 10.1016/j.aquaculture.2019.734812

    9. [9]

      J.E. Han, K.F. Tang, C.R. Pantoja, et al., Dis. Aquat. Organ. 120 (2016) 165–171.  doi: 10.3354/dao03022

    10. [10]

      P. Piamsomboon, S.K. Choi, B. Hanggono, et al., Pathogens 8 (2019) 233.  doi: 10.3390/pathogens8040233

    11. [11]

      B.K. Chen, Z. Dong, N.Y. Pang, et al., J. Invertebr. Pathol. 157 (2018) 100–103.  doi: 10.1016/j.jip.2018.08.009

    12. [12]

      Y.M. Liu, L. Qiu, A.Z. Sheng, et al., J. Invertebr. Pathol. 151 (2018) 191–196.  doi: 10.1016/j.jip.2017.12.006

    13. [13]

      L. Wang, Q. Lv, Y. He, et al., Microorganisms 8 (2020) 1366.  doi: 10.3390/microorganisms8091366

    14. [14]

      Z.K. Guo, Y. Liu, N.Y. He, et al., Chin. Chem. Lett. 32 (2021) 40–47.

    15. [15]

      X.H. Zhou, Q. Zhu, Y.H. Yang, Biosens. Bioelectron. 165 (2020) 112422.

    16. [16]

      M. Liu, L. Xi, T. Tan, et al., Chin. Chem. Lett. 32 (2021) 1726–1730.  doi: 10.1016/j.cclet.2020.11.072

    17. [17]

      K.S. Park, Biosens. Bioelectron. 102 (2018) 179–188.

    18. [18]

      H.M. Dong, C.L. Tang, Z.Y. He, et al., Chin. Chem. Lett. 31 (2020) 1812–1816.

    19. [19]

      K.F. Tang, C.R. Pantoja, R.M. Redman, et al., J. Invertebr. Pathol. 130 (2015) 37–41.
       

    20. [20]

      L. He, R.R. Huang, P.F. Xiao, et al., Chin. Chem. Lett. 32 (2021) 1593–1602.

    21. [21]

      R. Bruch, J. Baaske, C. Chatelle, et al., Adv. Mater. 31 (2019) 1905311.  doi: 10.1002/adma.201905311

    22. [22]

      Y. Liu, G.J. Yang, T.T. Li, et al., Chin. Chem. Lett. 32 (2021) 1957–1962.

    23. [23]

      C. Avendano, M.A. Patarroyo, Int. J. Mol. Sci. 21 (2020) 7981.  doi: 10.3390/ijms21217981

    24. [24]

      S. Higashide, O. Cho, Y. Matsuda, et al., Microbiol. Immunol. 62 (2018) 607–611.  doi: 10.1111/1348-0421.12641

    25. [25]

      T. Huang, L. Li, X. Liu, et al., Anal. Methods 12 (2020) 5551–5561.  doi: 10.1039/d0ay01768j

    26. [26]

      D. Selvarajah, C. Naing, N.H. Htet, J.W. Mak, Malar. J. 19 (2020) 211.

    27. [27]

      S. Waliullah, K.S. Ling, E.J. Cieniewicz, et al., Int. J. Mol. Sci. 21 (2020) 1756.  doi: 10.3390/ijms21051756

    28. [28]

      D. Wang, J. Yu, Y. Wang, et al., J. Virol. Methods 276 (2020) 113775.

    29. [29]

      J. Xiong, B. Huang, J.S. Xu, W. S Huang, Appl. Biochem. Biotechnol. 191 (2020) 201–211.  doi: 10.1007/s12010-020-03278-x

    30. [30]

      J. Yu, J. Xie, Y. Cao, et al., Anim. Biotechnol. 32 (2020) 1–8.

    31. [31]

      L. Zhang, C. Gleason, Plant. Dis. 103 (2019) 12–18.  doi: 10.1094/pdis-01-18-0093-re

    32. [32]

      H. Zhao, E. Su, L. Huang, et al., Chin. Chem. Lett. 33 (2022) 743–746.

    33. [33]

      H. Zhao, Q.F. Lin, L. Huang, et al., Nanoscale 13 (2021) 3275–3284.  doi: 10.1039/d0nr08008j

    34. [34]

      K.S. Sreedeep, S. Sethi, R. Yadav, et al., J. Infect. Chemother. 26 (2020) 823–830.

    35. [35]

      T. Kamber, L.L. Koekemoer, A. Mathis, Med. Vet. Entomol. 34 (2020) 295–301.  doi: 10.1111/mve.12437

    36. [36]

      M. Hussain, X.L. Liu, J. Zou, et al., Chin. Chem. Lett. 33 (2022) 1885–1888.

    37. [37]

      S.Y. Wang, N. Liu, L.Y. Zheng, G.Z. Cai, J.H. Lin, Lab. Chip 20 (2020) 2296–2305.  doi: 10.1039/d0lc00290a

    38. [38]

      L. Huang, E.B. Su, Y. Liu, et al., Chin. Chem. Lett. 32 (2021) 1555–1558.

    39. [39]

      X.S. Xu, N.Y. He, Chin. Chem. Lett. 32 (2021) 1747–1750.

    40. [40]

      Y.L. Fang, H.R. Liu, Y. Wang, et al., J. Biomed. Nanotechnol. 17 (2021) 407–415.  doi: 10.1166/jbn.2021.3028

    41. [41]

      Y.Y. Xu, T. Wang, Z. Chen, et al., Chin. Chem. Lett. 32 (2021) 3675–3686.

    42. [42]

      Z. Chen, T. Yang, H.W. Yang, et al., J. Biomed. Nanotechnol. 14 (2018) 198–205.

    43. [43]

      M. Hussain, Z. Chen, M. Lv, et al., Chin. Chem. Lett. 31 (2020) 3163–3167.

    44. [44]

      A. Sappat, W. Jaroenram, T. Puthawibool, et al., J. Virol. Methods 175 (2011) 141–148.
       

    45. [45]

      Y.Q. Zhang, X.X. Shan, L. Shi, et al., Food. Res. Int. 45 (2012) 1011–1015.
       

    46. [46]

      H. Abitan, H. Bohr, P. Buchhave, Appl. Optics 47 (2008) 5354–5357.
       

    47. [47]

      Y. Mori, M. Kitao, N. Tomita, T. Notomi, J. Biochem. Bioph. Meth. 59 (2004) 145–157.
       

    48. [48]

      J.K. Jabczynski, R.S. Romaniuk, Laser Technology 10974 (2018) 1097402.
       

  • 加载中
    1. [1]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    2. [2]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    3. [3]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    4. [4]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    5. [5]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    6. [6]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    9. [9]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    10. [10]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    11. [11]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    12. [12]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    13. [13]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    14. [14]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    15. [15]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    16. [16]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    17. [17]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    18. [18]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    19. [19]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    20. [20]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

Metrics
  • PDF Downloads(5)
  • Abstract views(363)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return