In situ decoration of CoP/Ti3C2Tx composite as efficient electrocatalyst for Li-oxygen battery
-
* Corresponding author.
E-mail address: lihuifeng@bnu.edu.cn(H. Li).
Citation:
Xingzi Zheng, Mengwei Yuan, Xianqiang Huang, Huifeng Li, Genban Sun. In situ decoration of CoP/Ti3C2Tx composite as efficient electrocatalyst for Li-oxygen battery[J]. Chinese Chemical Letters,
;2023, 34(1): 107152.
doi:
10.1016/j.cclet.2022.01.045
Y.Y. Shao, F. Ding, J. Xiao, et al., Adv. Funct. Mater.23 (2013) 987–1004.
doi: 10.1002/adfm.201200688
A. Manthiram, L. Li, Adv. Energy Mater. 5 (2015) 1401302.
doi: 10.1002/aenm.201401302
C. Liu, K. Sato, X.B. Han, S. Ye, Curr. Opin. Electrochem. 14 (2019) 151–156.
doi: 10.1016/j.coelec.2019.02.003
S.A. Freunberger, Y.H. Chen, N.E. Drewett, et al., Angew. Chem. Int. Ed. 50 (2011) 8609–8613.
doi: 10.1002/anie.201102357
C.Z. Shu, J.Z. Wang, J.P. Long, H.K. Liu, S.X. Dou, Adv. Mater. 31 (2019) 43.
M.W. Yuan, R. Wang, W.B. Fu, et al., ACS Appl. Mater. Interfeces 11 (2019) 11403–11413.
doi: 10.1021/acsami.8b21808
M.W. Yuan, S.T. Zhang, L. Lin, et al., ACS Sustain. Chem. Eng., 7 (2019) 17464–17473.
doi: 10.1021/acssuschemeng.9b04674
H.X. Yin, D.D. Li, Z.Z. Chi, et al., J. Mater. Chem. A9 (2021) 17865–17875.
doi: 10.1039/d1ta04830a
W. Zhao, X.M. Li, R. Yin, et al., Nanoscale 11 (2019) 50–59.
doi: 10.1039/c8nr08457b
W. Chen, Y.F. Gong, J.H. Liu, Chinese Chem. Lett. 28 (2017) 709–718.
doi: 10.1016/j.cclet.2016.10.023
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 992–1005.
doi: 10.1002/adma.201304138
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.
doi: 10.1002/adma.201102306
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, et al., Science 341 (2013) 1502–1505.
doi: 10.1126/science.1241488
L. Shi, Z. Li, Y.P. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 30766–30775.
doi: 10.1021/acsami.1c08750
Y.X. Min, H. Yuan, W.G. Wang, L. Xu, J. Phys. Chem. Lett. 12 (2021) 2742–2748.
doi: 10.1021/acs.jpclett.1c00482
Y.H. Liu, C.Y. Wang, S.L. Yang, F.F. Cao, H. Ye, J. Energy Chem. 66 (2022) 429–439.
doi: 10.1016/j.jechem.2021.08.040
R. Niu, R. Han, Y. Huang, et al., J. Alloy. Compd. 894 (2022) 162385.
doi: 10.1016/j.jallcom.2021.162385
Z.H. Liu, Y.H. Cui, Q. Li, Q.Y. Zhang, B.L. Zhang, J. Colloid Interface Sci. 607 (2022) 633–644.
doi: 10.1016/j.jcis.2021.09.009
X.Y. Li, C.Y. Wen, H.F. Li, G.B. Sun, J. Energy Chem. 47 (2020) 272–280.
doi: 10.1016/j.jechem.2020.02.016
C.Y. Wen, X.Z. Zheng, X.Y. Li, et al., Chem. Eng. J. 409 (2021) 12.
X.Y. Li, C.Y. Wen, M.W. Yuan, et al., J. Alloy. Compd. 824 (2020) 9.
C.Y. Wen, T.J. Zhu, X.Y. Li, et al., Chinese Chem. Lett. 31 (2020) 1000–1003.
doi: 10.1016/j.cclet.2019.09.028
M. Xu, N. Bai, H.X. Li, et al., Chinese Chem. Lett. 29 (2018) 1313–1316.
doi: 10.1016/j.cclet.2018.04.023
X. Zhang, J.W. Miao, P. Zhang, et al., Chinese Chem. Lett. 31 (2020) 2305–2308.
doi: 10.1016/j.cclet.2020.03.040
P. He, X.Y. Yu, X.W. Lou, Angew. Chem. Int. Ed. 56 (2017) 3897–3900.
doi: 10.1002/anie.201612635
A. Mendoza-Garcia, H.Y. Zhu, Y.S. Yu, et al., Angew. Chem. Int. Ed. 54 (2015) 9642–9645.
doi: 10.1002/anie.201503386
V.V.T. Doan-Nguyen, S. Zhang, E.B. Trigg, et al., ACS Nano 9 (2015) 8108–8115.
doi: 10.1021/acsnano.5b02191
Z.H. Yang, L. Liu, X.Y. Wang, S.Y. Yang, X.P. Su, J. Alloy. Compd. 509 (2011) 165–171.
doi: 10.1016/j.jallcom.2010.09.018
Y. Zhang, L. Gao, E.J.M. Hensen, J.P. Hofmann, ACS Energy Lett. 3 (2018) 1360–1365.
doi: 10.1021/acsenergylett.8b00514
Y. Li, B. Jia, B. Chen, et al., Dalton T. 47 (2018) 14679–14685.
doi: 10.1039/c8dt02706d
Y. Gong, W. Ding, Z. Li, et al., ACS Catal. 8 (2018) 4082–4090.
doi: 10.1021/acscatal.7b04401
M. Shekhirev, C.E. Shuck, A. Sarycheva, Y. Gogotsi, Prog. Mater. Sci. 120 (2021) 31.
J.M. Luo, X.Y. Tao, J. Zhang, et al., ACS Nano 10 (2016) 2491–2499.
doi: 10.1021/acsnano.5b07333
T.E. Rosser, J.P.S. Sousa, Y. Ziouani, et al., Catal. Sci. Technol. 10 (2020) 2398–2406.
doi: 10.1039/d0cy00123f
F.H. Saadi, A.I. Carim, W.S. Drisdell, et al., J. Am. Chem. Soc. 139 (2017) 12927–12930.
doi: 10.1021/jacs.7b07606
S. Liu, Z. Lin, R. Wan, et al., J. Mater. Chem. A9 (2021) 21259–21269.
doi: 10.1039/d1ta05648d
F.L. Yang, Y.T. Chen, G.Z. Cheng, S.L. Chen, W. Luo, ACS Catal. 7 (2017) 3824–3831.
doi: 10.1021/acscatal.7b00587
N.C.S. Selvam, J. Lee, G.H. Choi, et al., J. Mater. Chem. A7 (2019) 27383–27393.
doi: 10.1039/c9ta10664b
J. Yan, C.E. Ren, K. Maleski, et al., Adv. Funct. Mater. 27 (2017) 10.
M. Ghidiu, J. Halim, S. Kota, et al., Chem. Mater. 28 (2016) 3507–3514.
doi: 10.1021/acs.chemmater.6b01275
Y. Wang, Y.C. Lu, Energy Storage Mater. 28 (2020) 235–246.
doi: 10.1016/j.ensm.2020.03.007
P. Wang, C.X. Li, S.H. Dong, et al., Adv. Energy Mater. 9 (2019) 14.
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210