Effective norfloxacin elimination via photo-Fenton process over the MIL-101(Fe)-NH2 immobilized on α-Al2O3 sheet
-
* Corresponding author.
E-mail address: chongchenwang@126.com (C.-C. Wang).
Citation:
Qian Zhao, Chong-Chen Wang, Peng Wang. Effective norfloxacin elimination via photo-Fenton process over the MIL-101(Fe)-NH2 immobilized on α-Al2O3 sheet[J]. Chinese Chemical Letters,
;2022, 33(11): 4828-4833.
doi:
10.1016/j.cclet.2022.01.033
Y. Picó, V. Andreu, Anal. Bioanal. Chem. Res. 387 (2007) 1287–1299.
doi: 10.1007/s00216-006-0843-1
Y. Chen, T. Lan, L. Duan, et al., PLoS One 10 (2015) e0145025.
doi: 10.1371/journal.pone.0145025
M. Li, D. Wei, H. Zhao, et al., Chemosphere 95 (2014) 220–226.
doi: 10.1016/j.chemosphere.2013.09.002
Q. Zeng, S. Chang, M. Wang, et al., Chin. Chem. Lett. 32 (2021) 2212–2216.
doi: 10.1016/j.cclet.2020.12.062
J. Rivas, A. Encinas, F. Beltran, et al., J. Environ. Sci. Health A 46 (2011) 944–951.
doi: 10.1080/10934529.2011.586249
F. Li, Z. Wei, K. He, et al., Water Res. 185 (2020) 116219.
doi: 10.1016/j.watres.2020.116219
Y. Pi, J. Feng, M. Song, et al., Chin. Sci. Bull. 59 (2014) 2618–2624.
doi: 10.1007/s11434-014-0293-7
J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1–84.
doi: 10.1080/10643380500326564
B. Ponnusami, K. Muthukumar, J. Environ. Chem. Eng. 2 (2014) 557–572.
doi: 10.1016/j.jece.2013.10.011
D. Wang, D. Astruc, Chem. Rev. 114 (2014) 6949–6985.
doi: 10.1021/cr500134h
D. Ma, S. Peh, H. Gang, et al., ACS Appl. Mater. Interfaces 9 (2017) 7523–7534.
doi: 10.1021/acsami.6b14223
H. Fu, C.C. Wang, W. Liu, Chin. Chem. Lett. 33 (2022) 1647–1649.
doi: 10.1016/j.cclet.2021.08.065
X.H. Yi, C.C. Wang, Prog. Chem. 3 (2021) 471–489.
J. Huang, K. Li, L. Wang, et al., Chin. Chem. Lett. 33 (2022) 3787–3791.
doi: 10.1016/j.cclet.2021.11.028
D. Wang, R. Huang, W. Liu, et al., ACS Catal. 4 (2014) 4254–4260.
doi: 10.1021/cs501169t
Q. Wu, H. Yang, L. Kang, et al., Appl. Catal. B 263 (2020) 118282.
doi: 10.1016/j.apcatb.2019.118282
J. Maina, J. Schütz, L. Grundy, et al., ACS Appl. Mater. Interfaces 9 (2017) 35010–35017.
doi: 10.1021/acsami.7b11150
R. Molinari, T. Marino, A. Pietro, Int. J. Hydrogen Energy 39 (2014) 7247–7261.
doi: 10.1016/j.ijhydene.2014.02.174
Y. Liu, F. Liu, N. Ding, et al., Chin. Chem. Lett. 31 (2020) 2539–2548.
doi: 10.1016/j.cclet.2020.03.011
X.D. Du, X.H. Yi, P. Wang, et al., Chem. Eng. J. 356 (2019) 393–399.
doi: 10.1016/j.cej.2018.09.084
Q. Zhao, X.H. Yi, C.C. Wang, et al., Chem. Eng. J. 429 (2022) 132497.
doi: 10.1016/j.cej.2021.132497
Z. Zhang, X. Li, B. Liu, et al., RSC Adv. 6 (2015) 4289.
M. Cheng, C. Lai, Y. Liu, et al., Coord. Chem. Rev. 368 (2018) 80–92.
doi: 10.1016/j.ccr.2018.04.012
H. Fu, X.X. Song, L. Wu, et al., Mater. Res. Bull. 125 (2020) 110806.
doi: 10.1016/j.materresbull.2020.110806
M. Xia, M. Long, Y. Yang, et al., Appl. Catal. B 110 (2011) 118–125.
doi: 10.1016/j.apcatb.2011.08.033
Q. Chen, P. Wu, Y. Li, et al., J. Hazard. Mater. 168 (2009) 901–908.
X.H. Yi, H. Ji, C.C. Wang, et al., Appl. Catal. B 293 (2021) 120229.
doi: 10.1016/j.apcatb.2021.120229
F.X. Wang, C.C. Wang, X. Du, et al., Chem. Eng. J. 429 (2022) 132495.
doi: 10.1016/j.cej.2021.132495
X. Chen, R. Zhuan, J. Wang, et al., J. Hazard. Mater. 404 (2021) 124172.
W. Liu, J. Zhang, C. Zhang, et al., Chem. Eng. J. 171 (2011) 431–438.
doi: 10.1016/j.cej.2011.03.099
V. Sharma, M. Feng, J. Hazard. Mater. 372 (2017) 3–16.
J.M. Monteagudo, A. Durán, M.R. Martínez, et al., Chem. Eng. J. 380 (2020) 122410.
doi: 10.1016/j.cej.2019.122410
C.S. Bao, J. Zhao, Y.Y. Sun, et al., Environ. Sci. Nano 8 (2021) 2347–2359.
doi: 10.1039/D1EN00250C
H. Li, J. Chen, H. Hou, et al., Water Res. 126 (2017) 274–284.
doi: 10.1016/j.watres.2017.09.001
C. Wang, G. Yu, H. Chen, et al., Chemosphere 270 (2021) 129408.
doi: 10.1016/j.chemosphere.2020.129408
H. Chen, J.L. Wang, J. Hazard. Mater. 403 (2020) 123697.
M.J. Chen, W. Chu, Appl. Catal. B 168-169 (2015) 175–182.
M. Huang, T. Zhou, X. Wu, et al., Water Res. 119 (2017) 47–56.
doi: 10.1016/j.watres.2017.03.008
D. Ding, C. Liu, Y. Ji, et al., Chem. Eng. J. 308 (2017) 330–339.
doi: 10.1016/j.cej.2016.09.077
D. Yu, J. He, Z. Wang, et al., Chem. Eng. J. 417 (2021) 129240.
doi: 10.1016/j.cej.2021.129240
R. Yin, Y. Chen, S. He, et al., J. Hazard. Mater. 388 (2020) 121996.
doi: 10.1016/j.jhazmat.2019.121996
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Jinhui Xu , Yanting Zhang , Kecheng Wen , Xinyu Wang , Zhiwei Yang , Yuan Huang , Guozhong Zheng , Lupeng Huang , Jing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599