A tandem asymmetric oxidation-oxa-Michael sequence for dearomatization of β-naphthols
-
* Corresponding authors.
E-mail addresses: zhanghl@lzu.edu.cn (H. Zhang), yangdx@lzu.edu.cn (D. Yang).
Citation: Linqing Wang, Haiyong Zhu, Tianyu Peng, Yingfan Xu, Yanzhe Hou, Shixin Li, Shiming Pang, Hailong Zhang, Dongxu Yang. A tandem asymmetric oxidation-oxa-Michael sequence for dearomatization of β-naphthols[J]. Chinese Chemical Letters, ;2022, 33(9): 4273-4276. doi: 10.1016/j.cclet.2021.12.075
C. Zhuo, W. Zhang, S. You, Angew. Chem. Int. Ed. 51 (2012) 12662–12686.
doi: 10.1002/anie.201204822
C. Zhuo, C. Zheng, S. You, Acc. Chem. Res. 47 (2014) 2558–2573.
doi: 10.1021/ar500167f
W. Wu, L. Zhang, S. You, Chem. Soc. Rev. 45 (2016) 1570–1580.
doi: 10.1039/C5CS00356C
W. Sun, G. Li, L. Hong, R. Wang, Org. Biomol. Chem. 14 (2016) 2164–2176.
doi: 10.1039/C5OB02526E
Z. Xia, Q. Xu, C. Zheng, et al., Chem. Soc. Rev. 49 (2020) 286–300.
doi: 10.1039/C8CS00436F
J. Suo, J. Du, Y. Jiang, Chin. Chem. Lett. 30 (2019) 1512–1514.
doi: 10.1016/j.cclet.2019.04.028
J. Liu, Z. Fang, X. Liu, et al., Chin. Chem. Lett. 31 (2020) 1332–1336.
doi: 10.1016/j.cclet.2019.10.035
Y. Zhang, Y. Chen, J. Liu, et al., Nat. Chem. 13 (2021) 1093–1110.
doi: 10.1038/s41557-021-00778-z
H. Egami, T. Rouno, T. Niwa, et al., Angew. Chem. Int. Ed. 59 (2020) 14101–14105.
doi: 10.1002/anie.202005367
J. Ma, F. Kalthoff, T. Dalton, et al., Chem 5 (2019) 285–2864.
Z. Xia, C. Zheng, R. Xu, S. You, Nat. Commun. 10 (2019) 3150–3156.
doi: 10.1038/s41467-019-11109-9
T. Dohi, N. Takenaga, T. Nakae, et al., J. Am. Chem. Soc. 135 (2013) 4558–4566.
doi: 10.1021/ja401074u
M. Uyanik, T. Yasui, K. Ishihara, et al., Angew. Chem. Int. Ed. 49 (2010) 2175–2177.
doi: 10.1002/anie.200907352
C. Bosset, R. Coffinier, P.A. Peixoto, et al., Angew. Chem. Int. Ed. 53 (2014) 9860–9864.
doi: 10.1002/anie.201403571
A.H. Abazid, B.J. Nachtsheim, Angew. Chem. Int. Ed. 59 (2020) 1479–1484.
doi: 10.1002/anie.201912023
M. Uyanik, T. Kato, N. Sahara, O. Katade, K. Ishihara, ACS Catal. 9 (2019) 11619–11626.
doi: 10.1021/acscatal.9b04322
P.A. Peixoto, M. El-Assal, I. Chataigner, et al., Chem. Int. Ed. 60 (2021) 14967–14974.
doi: 10.1002/anie.202103410
Q. Wu, W. Liu, C. Zhuo, et al., Angew. Chem. Int. Ed. 50 (2011) 4455–4458.
doi: 10.1002/anie.201100206
Q. Cheng, Y. Wang, S. You, Angew. Chem. Int. Ed. 55 (2016) 3496–3499.
doi: 10.1002/anie.201511519
H. Nakayama, S. Harada, M. Kono, T. Nemoto, J. Am. Chem. Soc. 139 (2017) 10188–10191.
doi: 10.1021/jacs.7b04813
Y. Wang, W. Zhang, J. Xie, et al., J. Am. Chem. Soc. 142 (2020) 19354–19359.
doi: 10.1021/jacs.0c09638
L. Yang, H. Zheng, L. Luo, et al., J. Am. Chem. Soc. 137 (2015) 4876–4879.
doi: 10.1021/jacs.5b01285
J. Zheng, S. Wang, C. Zheng, S. You, J. Am. Chem. Soc. 137 (2015) 4880–4883.
doi: 10.1021/jacs.5b01707
L. Fan, J. Liu, L. Bai, Y. Wang, X. Luan, Angew. Chem. Int. Ed. 56 (2017) 14257–14261.
doi: 10.1002/anie.201708310
Y. Ge, C. Qin, L. Bai, et al., Angew. Chem. Int. Ed. 59 (2020) 18985–18989.
doi: 10.1002/anie.202008130
S. Dong, J. Zhu, J.A. Porco Jr, J. Am. Chem. Soc. 130 (2008) 2738–2739.
doi: 10.1021/ja711018z
Y. Zhang, Y. Liao, X. Liu, et al., Chem. Sci. 8 (2017) 6645–6649.
doi: 10.1039/C7SC02809A
R.R. Reddy, S.S. Gudup, P. Ghorai, Angew. Chem. Int. Ed. 55 (2016) 15115–15119.
doi: 10.1002/anie.201607039
L. Wang, D. Yang, D. Li, et al., Chem. Eur. J. 22 (2016) 8483–8487.
doi: 10.1002/chem.201601399
P. Wang, J. Wang, L. Wang, et al., Adv. Synth. Catal. 360 (2018) 401–405.
doi: 10.1002/adsc.201700745
L. Wang, D. Yang, D. Li, et al., Adv. Synth. Catal. 360 (2018) 4491–4496.
doi: 10.1002/adsc.201801041
X. Liu, J. Zhang, L. Bai, et al., Chem. Sci. 11 (2020) 671–676.
doi: 10.1039/C9SC05320D
D. Yang, L. Wang, D. Li, R. Wang, Chem 5 (2019) 1108–1166.
doi: 10.1016/j.chempr.2019.02.002
L. Wang, D. Yang, Synlett 32 (2021) 1309–1315.
doi: 10.1055/a-1409-2734
H. Du, X. Zhang, Z. Wang, et al., Eur. J. Org. Chem. 2008 (2008) 2248–2254.
doi: 10.1002/ejoc.200701223
T. Yoshino, H. Morimoto, G. Lu, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 131 (2009) 17082–17083.
doi: 10.1021/ja908571w
B.M. Trost, S. Malhotra, B.A. Fried, J. Am. Chem. Soc. 131 (2009) 1674–1675.
doi: 10.1021/ja809181m
M. Hatano, T. Horibe, K. Ishihara, Org. Lett. 12 (2010) 3502–3505.
doi: 10.1021/ol101353r
M. Hatano, T. Horibe, K. Ishihara, Angew. Chem. Int. Ed. 52 (2013) 4549–4553.
doi: 10.1002/anie.201300938
D. Yang, L. Wang, F. Han, et al., Angew. Chem. Int. Ed. 52 (2013) 6739–6742.
doi: 10.1002/anie.201301146
D. Yang, L. Wang, M. Kai, et al., Angew. Chem. Int. Ed. 54 (2015) 9523–9527.
doi: 10.1002/anie.201503056
D. Yang, L. Wang, F. Han, et al., Angew. Chem. Int. Ed. 54 (2015) 2185–2189.
doi: 10.1002/anie.201410257
D. Li, Y. Wang, L. Wang, et al., Chem. Commun. 52 (2016) 9640–9643.
doi: 10.1039/C6CC02877B
L. Wang, D. Li, D. Yang, et al., Chem. Asian J. 11 (2016) 691–695.
doi: 10.1002/asia.201501369
D. Li, K. Wang, L. Wang, et al., Org. Lett. 19 (2017) 3211–3214.
doi: 10.1021/acs.orglett.7b01333
K. Wang, L. Wang, X. Liu, et al., Org. Lett. 19 (2017) 4351–4354.
doi: 10.1021/acs.orglett.7b02044
L. Wang, D. Yang, D. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 9088–9092.
doi: 10.1002/anie.201804177
D. Li, L. Wang, H. Zhu, et al., Org. Lett. 21 (2019) 4717–4720.
doi: 10.1021/acs.orglett.9b01599
A. Falconnet, M. Magre, B. Maity, et al., Angew. Chem. Int. Ed. 58 (2019) 17567–17571.
doi: 10.1002/anie.201908012
D. Li, Y. Yang, M. Zhang, et al., Nat. Commun. 11 (2020) 2559–2568.
doi: 10.1038/s41467-020-16486-0
D. Li, M. Zhang, Y. Yang, et al., Org. Lett. 22 (2020) 9229–9233.
doi: 10.1021/acs.orglett.0c03417
S.S. Pendalwar, A.V. Chakrawar, S.R. Bhusare, Chin. Chem. Lett. 29 (2018) 942–944.
doi: 10.1016/j.cclet.2017.09.058
Y. Wang, D. Du, Org. Chem. Front. 7 (2020) 3266–3283.
doi: 10.1039/D0QO00631A
D. Zhu, J. Liu, M. Xu, J. Am. Chem. Soc. 143 (2021) 8583–8589.
doi: 10.1021/jacs.1c03498
Z. Sun, T. Zha, Z. Shao, Green Synth. Catal. 2 (2021) 241–245.
T. Peng, H. Zhu, Y. Xu, et al., Org. Chem. Front. 8 (2021) 3463–3468.
F.A. Davis, U.K. Nadir, E.W. Kluger, J. Chem. Soc. Chem. Commun. (1977) 25–26.
F.A. Davis, A.C. Sheppard, Tetrahedron 45 (1989) 5703–5742.
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Yu-Hang Miao , Zheng-Xu Zhang , Xu-Yi Huang , Yuan-Zhao Hua , Shi-Kun Jia , Xiao Xiao , Min-Can Wang , Li-Ping Xu , Guang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255