Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems
-
* Corresponding authors.
E-mail addresses: weixu@bit.edu.cn (W. Xu), nana@bnu.edu.cn (N. Na).
Citation: Xiaotong Shen, Wei Xu, Jin Ouyang, Na Na. Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems[J]. Chinese Chemical Letters, ;2022, 33(10): 4505-4516. doi: 10.1016/j.cclet.2021.12.061
T. Förster, Ann. Phys. 437 (1948) 55-75.
doi: 10.1002/andp.19484370105
R. Roy, S. Hohng, T. Ha, Nat. Methods 5 (2008) 507-516.
doi: 10.1038/nmeth.1208
I.L. Medintz, J.H. Konnert, A.R. Clapp, et al., Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 9612.
doi: 10.1073/pnas.0403343101
I.L. Medintz, A.R. Clapp, H. Mattoussi, et al., Nat. Mater. 2 (2003) 630.
doi: 10.1038/nmat961
E.R. Goldman, I.L. Medintz, J.L. Whitley, et al., J. Am. Chem. Soc. 127 (2005) 6744.
doi: 10.1021/ja043677l
Y. Wang, Z. Tang, M.A. Correa-Duarte, L.M. Liz-Marzan, N.A. Kotov, J. Am. Chem. Soc. 125 (2003) 2830.
doi: 10.1021/ja029231r
W.R. Algar, N. Hildebrandt, S.S. Vogel, I.L. Medintz, Nat. Methods 16 (2019) 815-829.
doi: 10.1038/s41592-019-0530-8
F. Patolsky, Y. Weizmann, I. Willner, J. Am. Chem. Soc. 124 (2002) 770.
doi: 10.1021/ja0119752
S. Peng, R. Sun, W. Wang, C. Chen, Chin. Chem. Lett. 29 (2018) 1503-1508.
doi: 10.1016/j.cclet.2017.12.006
T. Xiao, W. Zhong, L. Zhou, et al., Chin. Chem. Lett. 30 (2019) 31-36.
doi: 10.1016/j.cclet.2018.05.034
J. Zhuang, D. Wang, D. Li, et al., Chin. Chem. Lett. 29 (2018) 1815-1818.
doi: 10.1016/j.cclet.2018.10.012
Y. Yan, X. Zhang, X. Zhang, et al., Chin. Chem. Lett. 31 (2020) 1091-1094.
doi: 10.1016/j.cclet.2019.10.025
P. Zhou, P. Lv, L. Yu, et al., Chin. Chem. Lett. 30 (2019) 1067-1070.
doi: 10.1016/j.cclet.2019.01.020
M. Li, J. Chen, J. Pan, et al., Chin. Chem. Lett. 30 (2019) 541-544.
doi: 10.1016/j.cclet.2018.11.017
M. Elangovan, R.N. Day, A. Periasamy, J. Microsc. 205 (2002) 3-14.
doi: 10.1046/j.0022-2720.2001.00984.x
A. Miyawaki, Y. Niino, Mol. Cell 58 (2015) 632-643.
doi: 10.1016/j.molcel.2015.03.002
B.T. Bajar, E.S. Wang, A.J. Lam, et al., Sci. Rep. 6 (2016) 20889.
doi: 10.1038/srep20889
B. Hochreiter, A.P. Garcia, J.A. Schmid, Sensors 15 (2015) 26281-26314.
doi: 10.3390/s151026281
S.J. Sahl, S.W. Hell, S. Jakobs, Nat. Rev. Mol. Cell Bio. 18 (2017) 685-701.
doi: 10.1038/nrm.2017.71
R. Moussa, A. Baierl, V. Steffen, et al., J. Biotechnol. 191 (2014) 250-259.
doi: 10.1016/j.jbiotec.2014.07.007
L. Schärfen, M. Schlierf, Methods 169 (2019) 11-20.
doi: 10.1016/j.ymeth.2019.02.011
E.A. Booth, J. Thorner, Methods Cell Biol 136 (2016) 35-56.
R.G. Sturmey, P.J. O'Toole, H.J. Leese, Reproduction 132 (2006) 829-837.
doi: 10.1530/REP-06-0073
D.R. Davydov, N.Y. Davydova, J.R. Halpert, Biochemistry 47 (2008) 11348-11359.
doi: 10.1021/bi8011803
H. Fernando, J.R. Halpert, D.R. Davydov, Biochemistry 45 (2006) 4199-4209.
doi: 10.1021/bi052491b
Y.E. Choi, J.W. Kwak, J.W. Park, Sensors 10 (2010) 428-455.
doi: 10.3390/s100100428
J. Yao, M. Yang, Y. Duan, Chem. Rev. 114 (2014) 6130-6178.
doi: 10.1021/cr200359p
M.H.W. Stopel, J.C. Prangsma, C. Blum, V. Subramaniam, RSC Adv. 3 (2013) 17440-17445.
doi: 10.1039/c3ra43637c
S.R. Sturzenbaum, M. Hockner, A. Panneerselvam, et al., Nat. Nanotechnol. 8 (2013) 57-60.
doi: 10.1038/nnano.2012.232
C.Y. Zhang, H.C. Yeh, M.T. Kuroki, T.H. Wang, Nat. Mater. 4 (2005) 826-831.
doi: 10.1038/nmat1508
I.L. Medintz, A.R. Clapp, H. Mattoussi, et al., Nat. Mater. 2 (2003) 630-638.
doi: 10.1038/nmat961
G.K. Wang, Y.F. Lu, C.L. Yan, Y. Lu, Sens. Actuators B: Chem. 211 (2015) 1-6.
doi: 10.1016/j.snb.2015.01.051
C.C. You, O.R. Miranda, B. Gider, et al., Nat. Nanotechnol. 2 (2007) 318-323.
doi: 10.1038/nnano.2007.99
C. Bremer, C.H. Tung, R. Weissleder, Nat. Med. 7 (2001) 743-748.
doi: 10.1038/89126
B.E. Turk, L.L. Huang, E.T. Piro, L.C. Cantley, Nat. Biotechnol. 19 (2001) 661-667.
doi: 10.1038/90273
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666-669.
doi: 10.1126/science.1102896
A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191.
doi: 10.1038/nmat1849
M.C. Liu, C.L. Chen, J. Hu, X.L. Wu, X. Wang, J. Phys. Chem. C 115 (2011) 25234-25240.
doi: 10.1021/jp208575m
M. Li, Q. Liu, Z.J. Jia, et al., Carbon 67 (2014) 185-197.
doi: 10.1016/j.carbon.2013.09.080
C.L. Weaver, J.M. LaRosa, X.L. Luo, X.T. Cui, ACS Nano 8 (2014) 1834-1843.
doi: 10.1021/nn406223e
J. Hu, M.H. Liu, C.Y. Zhang, ACS Nano 13 (2019) 7191-7201.
doi: 10.1021/acsnano.9b02679
L. He, D.Q. Lu, H. Liang, et al., ACS Nano 11 (2017) 4060-4066.
doi: 10.1021/acsnano.7b00725
J. Gao, H. Zhang, Z. Wang, Analyst 145 (2020) 3535-3542.
doi: 10.1039/C9AN02610J
G. Su, M. Zhu, M. Xu, et al., Chem. Commun. 56 (2020) 13583-13586.
doi: 10.1039/D0CC06054B
X.T. Shen, W. Xu, J.B. Guo, J. Ouyang, N. Na, ACS Sens. 5 (2020) 2800-2805.
doi: 10.1021/acssensors.0c00747
R. Qian, L. Ding, H. Ju, J. Am. Chem. Soc. 135 (2013) 13282-13285.
doi: 10.1021/ja406532e
Y.Y. Liang, J. Zhang, H. Cui, et al., Chem. Commun. 56 (2020) 3183-3186.
doi: 10.1039/C9CC09808A
Q. Yan, X. Guo, X. Huang, et al., ACS Appl. Mater. Interfaces 11 (2019) 24377-24385.
doi: 10.1021/acsami.9b04142
Y. Li, D.L. Jia, W. Ren, F. Shi, C.H. Liu, Adv. Funct. Mater. 29 (2019) 1903191.
doi: 10.1002/adfm.201903191
W. Song, H.J. Zhang, Y.H. Liu, C.L. Ren, H.L. Chen, Chin. Chem. Lett. 28 (2017) 1675-1680.
doi: 10.1016/j.cclet.2017.05.001
W. Yu, M. Shevtsov, X. Chen, H. Gao, Chin. Chem. Lett. 31 (2020) 1366-1374.
doi: 10.1016/j.cclet.2020.02.036
C.H. Liu, L.J. Chang, H.H. Wang, Anal. Chem. 86 (2014) 6095-6102.
doi: 10.1021/ac501247t
W.M. Howell, Methods Mol. Biol. 335 (2006) 33-41.
C.Y. Zhang, H.C. Yeh, M.T. Kuroki, T.H. Wang, Nat. Mater. 4 (2005) 826-831.
doi: 10.1038/nmat1508
H.H. Chen, K.W. Leong, Nanomedicine 1 (2006) 119-122.
doi: 10.2217/17435889.1.1.119
C.Y. Zhang, L.W. Johnson, Anal. Chem. 78 (2006) 5532-5537.
doi: 10.1021/ac0605389
D.J. Zhou, L.M. Ying, X. Hong, et al., Langmuir 24 (2008) 1659-1664.
doi: 10.1021/la703583u
W.R. Algar, U.J. Krull, Anal. Chim. Acta 581 (2007) 193-201.
doi: 10.1016/j.aca.2006.08.026
H. Peng, L.J. Zhang, T.H.M. Kjallman, C. Soeller, J. Travas-Sejdic, J. Am. Chem. Soc. 129 (2007) 3048-3049.
doi: 10.1021/ja0685452
J. Lee, Y. Choi, J. Kim, E. Park, R. Song, ChemPhysChem 10 (2009) 806-811.
doi: 10.1002/cphc.200800504
J.C. Park, S.Y. Choi, M.Y. Yang, et al., ACS Appl. Mater. Interfaces 11 (2019) 33525-33534.
doi: 10.1021/acsami.9b07717
J. Guo, X. Qiu, C. Mingoes, et al., ACS Nano 13 (2019) 505-514.
doi: 10.1021/acsnano.8b07137
K. Bartnik, A. Barth, M. Pilo-Pais, et al., J. Am. Chem. Soc. 142 (2020) 815-825.
doi: 10.1021/jacs.9b09093
D.S. Seferos, D.A. Giljohann, H.D. Hill, A.E. Prigodich, C.A. Mirkin, J. Am. Chem. Soc. 129 (2007) 15477-15479.
doi: 10.1021/ja0776529
C.H.J. Choi, L.L. Hao, S.P. Narayan, E. Auyeung, C.A. Mirkin, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 7625-7630.
doi: 10.1073/pnas.1305804110
J.I. Cutler, E. Auyeung, C.A. Mirkin, J. Am. Chem. Soc. 134 (2012) 1376-1391.
doi: 10.1021/ja209351u
D.A. Giljohann, D.S. Seferos, P.C. Patel, et al., Nano Lett 7 (2007) 3818-3821.
doi: 10.1021/nl072471q
N.L. Rosi, D.A. Giljohann, C.S. Thaxton, Science 312 (2006) 1027-1030.
doi: 10.1126/science.1125559
P.C. Patel, D.A. Giljohann, W.L. Daniel, et al., Bioconjugate Chem. 21 (2010) 2250-2256.
doi: 10.1021/bc1002423
J.M. Levsky, R.H. Singer, J. Cell Sci. 116 (2003) 2833-2838.
doi: 10.1242/jcs.00633
M.D. Massich, D.A. Giljohann, A.L. Schmucker, P.C. Patel, C.A. Mirkin, ACS Nano 4 (2010) 5641-5646.
doi: 10.1021/nn102228s
M.D. Massich, D.A. Giljohann, D.S. Seferos, et al., Mol. Pharmaceutics 6 (2009) 1934-1940.
doi: 10.1021/mp900172m
D. Zheng, D.S. Seferos, D.A. Giljohann, P.C. Patel, C.A. Mirkin, Nano Lett 9 (2009) 3258-3261.
doi: 10.1021/nl901517b
X. Zhang, N. Ying, C. Shen, G. Cui, J. Nanosci. Nanotechnol. 17 (2017) 1053-1060.
doi: 10.1166/jnn.2017.12656
C. Zhu, J. Yang, J. Zheng, et al., Anal. Chem. 91 (2019) 15599-15607.
doi: 10.1021/acs.analchem.9b03659
B.B. Haab, Curr. Opin. Biotechnol. 17 (2006) 415-421.
doi: 10.1016/j.copbio.2006.06.013
X. Wang, Y. Xia, Y. Liu, et al., Chem. Eur. J. 18 (2012) 7189-7195.
doi: 10.1002/chem.201200227
W.R. Algar, D. Wegner, A.L. Huston, J. Am. Chem. Soc. 134 (2012) 1876-1891.
doi: 10.1021/ja210162f
Q. Wei, M. Lee, X. Yu, et al., Anal. Biochem. 358 (2006) 31-37.
doi: 10.1016/j.ab.2006.08.019
Y. Choi, M. Pinto, Appl. Immunohistochem. Mol. Morphol. 13 (2005) 19-24.
doi: 10.1097/00129039-200503000-00004
Y. Omoto, H. Iwase, Cancer Sci 106 (2015) 337.
doi: 10.1111/cas.12613
K.D. Wegner, Z. Jin, S. Linden, T.L. Jennings, N. Hildebrandt, ACS Nano 7 (2013) 7411-7419.
doi: 10.1021/nn403253y
J. Kim, S. Kwon, J.K. Park, I. Park, Biosens. Bioelectron. 55 (2014) 209-215.
doi: 10.1016/j.bios.2013.12.007
D. Shitrit, B. Zingerman, A.B. Shitrit, D. Shlomi, M.R. Kramer, Oncologist 10 (2005) 501-507.
doi: 10.1634/theoncologist.10-7-501
M.J. Duffy, S. Shering, F. Sherry, E. McDermott, N.O. Higgins, Int. J. Biol. Markers 15 (2000) 330-333.
doi: 10.1177/172460080001500410
A. Keshaviah, S. Dellapasqua, N. Rotmensz, et al., Ann. Oncol. 18 (2007) 701-708.
doi: 10.1093/annonc/mdl492
S. Nath, P. Mukherjee, Trends Mol. Med. 20 (2014) 332-342.
S. Ge, L. Ge, M. Yan, et al., Biosens. Bioelectron. 43 (2013) 425-431.
doi: 10.1016/j.bios.2012.12.047
G. Yang, Q. Zhang, L. Ma, et al., Anal. Chim. Acta. 1098 (2020) 133-139.
doi: 10.1016/j.aca.2019.11.035
Y. Zhan, S. Ling, H. Huang, et al., Angew. Chem. Int. Ed. 60 (2021) 2637-2642.
doi: 10.1002/anie.202011903
S.M. Yoo, S.Y. Lee, Trends Biotechnol 34 (2016) 7-25.
doi: 10.1016/j.tibtech.2015.09.012
X.H. Tan, Y.B. Li, Y. Liao, H.Z. Liu, Sci. Rep. 10 (2020) 20710.
doi: 10.1038/s41598-020-77913-2
I.L. Medintz, A.R. Clapp, F.M. Brunel, et al., Nat. Mater. 5 (2006) 581-589.
doi: 10.1038/nmat1676
R. Gill, L. Bahshi, R. Freeman, I. Willner, Angew. Chem. Int. Ed. 47 (2008) 1676-1679.
doi: 10.1002/anie.200704794
H. Yuan, H. Zhao, K. Peng, et al., ACS Appl. Mater. Interfaces 12 (2020) 21263-21269.
doi: 10.1021/acsami.9b17783
Y. Shen, T. Wu, Y. Zhang, et al., Anal. Chem. 92 (2020) 13396-13404.
doi: 10.1021/acs.analchem.0c02762
N. Xia, F. Feng, C. Liu, et al., Talanta 192 (2019) 500-507.
doi: 10.1016/j.talanta.2018.08.086
C. Garza-Lombo, Y. Posadas, L. Quintanar, M.E. Gonsebatt, R. Franco, Antioxid. Redox Signal. 28 (2018) 1669-1703.
doi: 10.1089/ars.2017.7272
Y.Y. Qi, F.R. Xiu, G. Yu, L.L. Huang, B.X. Li, Biosens. Bioelectron. 87 (2017) 439-446.
doi: 10.1016/j.bios.2016.08.022
R.Y. Wang, X.H. Zhou, H.C. Shi, Y. Luo, Biosens. Bioelectron. 78 (2016) 418-422.
doi: 10.1016/j.bios.2015.11.082
X. Li, J.Q. Xie, B.Y. Jiang, R. Yuan, Y. Xiang, ACS Appl. Mater. Interfaces 9 (2017) 5733-5738.
doi: 10.1021/acsami.6b13717
J. Lehel, D. Zwillinger, A. Bartha, K. Lányi, P. Laczay, Environ. Sci. Pollut. Res. Int. 24 (2017) 25372-25382.
doi: 10.1007/s11356-017-0206-9
R. Akhbarizadeh, F. Moore, B. Keshavarzi, Environ. Pollut. 232 (2018) 154-163.
doi: 10.1016/j.envpol.2017.09.028
X. Cui, L. Zhu, J. Wu, et al., Biosens. Bioelectron. 63 (2015) 506-512.
doi: 10.1016/j.bios.2014.07.085
M. Wu, R. Kempaiah, P.J.J. Huang, V. Maheshwari, J. Liu, Langmuir 27 (2011) 2731-2738.
doi: 10.1021/la1037926
H.N. Abdelhamid, H.F. Wu, Microchim. Acta 182 (2015) 1609-1617.
doi: 10.1007/s00604-015-1461-4
C. Lu, P.J.J. Huang, Y.B. Ying, J.W. Liu, Biosens. Bioelectron. 79 (2016) 244-250.
doi: 10.1016/j.bios.2015.12.043
J.S. Li, H. Wang, Z.K. Guo, et al., Talanta 162 (2017) 46-51.
doi: 10.1016/j.talanta.2016.09.066
X.W. Zuo, H.G. Zhang, Q. Zhu, W.F. Wang, X.G. Chen, Biosens. Bioelectron. 85 (2016) 464-470.
doi: 10.1016/j.bios.2016.05.044
L. Deng, X.Y. Ouyang, J.Y. Jin, et al., Anal. Chem. 85 (2013) 8594-8600.
doi: 10.1021/ac401408m
M.D. Xu, Z.Q. Gao, Q.H. Wei, G.N. Chen, D.P. Tang, Biosens. Bioelectron. 79 (2016) 411-415.
doi: 10.1016/j.bios.2015.12.081
J.S. Melinger, R. Sha, C. Mao, N.C. Seeman, M.G. Ancona, J. Phys. Chem. B 120 (2016) 12287-12292.
doi: 10.1021/acs.jpcb.6b09385
H. Zhang, J. Lv, Z. Jia, Sensors 17 (2017) 1078.
doi: 10.3390/s17051078
M. Willemsel, E. Janssen, F. de Lange, B. Wieringa, J. Fransen, Nat. Biotechnol. 25 (2007) 170-172.
doi: 10.1038/nbt0207-170
S. Zadran, S. Standley, K. Wong, et al., Appl. Microbiol. Biotechnol. 96 (2012) 895-902.
doi: 10.1007/s00253-012-4449-6
V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, et al., Nano Lett. 7 (2007) 3065-3070.
doi: 10.1021/nl071546n
L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Chin. Chem. Lett. 25 (2014) 389-396.
doi: 10.1016/j.cclet.2013.12.014
X. Hai, Y.W. Li, K.X. Yu, et al., Chin. Chem. Lett. 32 (2021) 1215-1219.
doi: 10.1016/j.cclet.2020.09.013
C. Chen, B. Corry, L. Huang, N. Hildebrandt, J. Am. Chem. Soc. 141 (2019) 11123-11141.
doi: 10.1021/jacs.9b03383
J. Ma, M.X. Gao, H. Zuo, et al., Anal. Chem. 92 (2020) 14278-14283.
doi: 10.1021/acs.analchem.0c03991
L. Stryer, R.P. Hangland, Proc. Natl. Acad. Sci. U. S. A. 58 (1967) 719.
doi: 10.1073/pnas.58.2.719
J.P. Lai, B.P. Shah, E. Garfunkel, K.B. Lee, ACS Nano 7 (2013) 2741-2750.
doi: 10.1021/nn400199t
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
Miao-Miao Chen , Min-Ling Zhang , Xiao Song , Jun Jiang , Xiaoqian Tang , Qi Zhang , Xiuhua Zhang , Peiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785
Xu Luo , Jinwen Xiao , Qiming Yang , Xiaolong Lu , Qianjun Huang , Xiaojun Ai , Bo Li , Li Sun , Long Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
Meihui Liu , Xinyuan Zhou , Xiao Li , Zhenjie Xue , Tie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Ningxiang Wu , Huaping Zhao , Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Di An , Mingdong She , Ziyang Zhang , Ting Zhang , Miaomiao Xu , Jinjun Shao , Qian Shen , Xuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346